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Fast Chebyshev-polynomial method for simulating the time evolution of linear dynamical systems
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We present a fast method for simulating the time evolution of any linear dynamical system possessing
eigenmodes. This method does not require an explicit calculation of the eigenvectors and eigenfrequencies, and
is based on a Chebyshev polynomial expansion of the formal operator matrix solution in the eigenfrequency
domain. It does not suffer from the limitations of ordinary time-integration methods, and can be made accurate
to almost machine precision. Among its possible applications are harmonic classical mechanical systems,
quantum diffusion, and stochastic transport theory. An example of its use is given for the problem of vibra-
tional wave-packet propagation in a disordered lattice.
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[. INTRODUCTION characterized by time-independent Hamiltonians and classi-
cal harmonic atomic systems described by dynamical matri-
Consider a dynamical system evolving in time, and sup-ces can be treated by the method developed below. Among
pose that the time-evolution problem can be reduced to ththe physical problems to which this fast evolution method
eigenvalue-eigenvector problem. If the eigenvalues and coFEM) can be applied are stochastic transport theearly
responding eigenvectors are known, then all dynamical variguantum diffusion and electron localization problefBsf],
ables describing the system can be found at any moment @fave propagation in disordered atomic structuiés] etc.
time. Let us suppose that the eigenvalues and eigenvectors of The basic idea behind the FEM is to expand the formal
the system exist but cannot be found either analytically ofoperatoy solution of the problem in a series of suitable
numerically, e.g., because the number of variables involvedChebyshey polynomials defined on the set of operators.
is very large. The question is this: Can we predazliculate  The coefficients in such expansions depend only on time and
or simulate the dynamical state of the system at any momenon the form of the time-evolution operator, and possibly on
of time knowing only its equations of motion, the initial external sources or forces; they are independent of the num-
boundary conditions, and the fact that the system can bker of dynamical variables and the form of the interaction
characterized by the eigenvalues and eigenvectors? The aoperator. This provides the generality of the approach. In
swer is yesobvious in the case of the existence of an anafact, the FEM was inspired by several ideé$:the possibil-
lytical solution. The standard way, though rather inefficient, ity of using higher-order integration algorithnps]; (i) the
is to solve the equations of motion by a numerical integratiorkernel polynomial method developed by Silver anddBio
scheme. This usually involves performing a large number of9] for the calculations of density of states and other spectral
integration time steps to reach the desired moment of timéunctions for large systems; ar(di) the unstable-oscillator
(see, e.g., Ref.1]). Such schemes are applicable to generamethod of Okamoto and Mar{d 0], which employs an un-
dynamical systems which are not necessarily described bysually large integration time step for calculations of the
eigenfunctions and eigenvalues, but do not take advantage ektreme eigenvalues and eigenvectors. Chebyshev-
the existence of eigenfunctions and eigenvalues where thgylynomial-based propagator methods have been extensively
are available. used to study the time evolution of quantum systems obeying
In this paper, we suggest a general, numerically efficienthe (first-order differentigl time-dependent Schdinger
approach for the solution of time-evolution problems for dy-equation[11]—see Refs[12—14. However, to the best of
namical systems, particularly involving second-order differ-our knowledge, they have not been used for an investigation
ential equations, which can be described by eigenfunctionsf the time evolution of, e.g., atomic vibrational problems
and eigenvaluef2,3]. Our approach is quite the opposite of involving the solution of second-order differential equations.
time-integration schemes, which treat the problem in theThis is the subject of this paper.
time domain by sampling the time continuum at discrete in- The computational efficiency of the FEM is due to the
tervals. Instead, we solve the time-evolution problem in thefact that the polynomials defined in terms of operators can be
frequency(or eigenvalug domain, taking advantage of the easily computed in the matrix representation of the operators.
fact that each eigenvector evolves independently of the othfhe FEM has very reasonable time and space requirements,
ers. This allows us to find all dynamical variables at anycan give an extremely high accuracy, and is easily vector-
moment of time after, in fact, only one time step. This ap-ized. It is especially useful for large systems, e.g., with0’
proach is applicable to a broad class of dynamical systemstoms characterized by sparse matrices, in which case the
the interactions in which are described by linear Hermitiancomputation time scales linearly with the number of coordi-
operators, and the time-evolution operator can be of quit@ates as well as with the evolution time.
general form. For example, quantum-mechanical systems The rest of the paper is arranged in the following manner.
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Section Il briefly outlines the problem; the formal solution is  There are two straightforward important physical applica-
presented in Sec. lll, and the Chebyshev polynomial expartions for Eqgs.(1)—(3). The first one is for the case,(t)
sion, which is the basis of the FEM, is described in Sec. IV.=1 anda;(t) = ay(t)=0 in Eq.(3), so that Eq(1) can be
The widely used Verlet algorithm is analyzed in Sec. V, andrewritten in the form
in Sec. VI we put forth an improved Verlet algorithfwhich
unfortunately did not entirely live up to our hope3he re- U+Hu=0. (4)
sults of tests of the computational performance of the FEM
for the case of vibrations of an ordered linear chain of atomd his is the equation of motion of a classical harmonic me-
are presented in Sec. VII. A representative application of th€hanical system ofN, particles without friction in a
FEM, to the case of wave-packet propagation in disordere®-dimensional N=DN,) real spacésystem ofN, coupled
three-dimensional media, is given in Sec. VIII. Details of theharmonic oscillators In that case, the basis can be the site
calculation of the coefficients in the Chebyshev series ar®asis, with the basis vector being a unit displacement vector
given in the Appendix. (from the equilibrium positionof one of the particlegat-
oms along one of the Cartesian axes. The vectdis then
the mass-weightedmultiplied by the square root of the
atomic maspgdisplacement vector, and® is the dynamical
Let us consider a dynamical system, the state of whichmatrix containing the second derivatives of the potential en-
can be characterized by a state vedtoru in a linear vec-  ergy[16]. The initial conditions for such a problem are usu-
tor space of dimensionalitil spanned by the orthonormal ally defined by the atomic positions and velocities:
basis{s} (i=1, ... N). Suppose that the state of the system
evolves with timeu(t) according to the equation of motion u(t=0)=ug, )

Il. FORMULATION OF THE PROBLEM

T(tyu(t)+Hu(t)=0, (1) u(0)=vo. (6)
A ) ) ) o Equations(4)—(6) provide a complete description of the dy-
with T(t) being a time-evolution operator ardl being the  hamijcal system.
time-independent linear Hermitian operator responsible for The second obvious application is fan(t) = ag(t) =0,
interactions and defined in the same linear vector space. Th&(t)z —i in Eq. (3), so that the equation of motion looks
operatorH can be written in the matrix forn®, with the ke

eIementsH?jz(3|F||s1~) calculated, e.g., in the bas{s}.

The state vectou can also be characterized by its compo- i ﬁ W=HW @)
nents (projectiong in the same basisy{us, ... uy}. The ot '

matrix H® is not necessarily diagonal in tlsaepresentation,

but there is a unitary transformatida to the orthonormal
basis{g} (the eigenvector basisin which the matrixH® is
diagonal(see, e.g., Ref15]). The standard expressions con-
necting the vectors and matrices in different representation ; _ S o .
are: ueg: E-1uS and He=E*H°E. with the matriF))<E con- or solid-state tight-binding Hamiltoniar{4.7]). The matrix
taining the eigenvectors (with the corresponding eigenval- H is the H?mntonjan matrix defined |'n the same basis, with
ues\;) as the columns in the representation. elementsH} =(s|H|s). For example, it could be the Ander-
The time-evolution operator could be a quite general in-Son Hamiltonian in the site basf§], or a perturbed Hamil-
tegrodifferential time-dependent operator. What is importantonian in the finite basis of the non-perturbed ¢f], etc.
for us is just the fact that the solution(t,\), of Eq. (1), in ~ The initial condition for such a problem could be

which the operatoH is replaced by a scalar number(e.g.,
one of the eigenvalues of the mati¥),

This is just the particular case of the Satirger equation

(h=1), where the vectau is replaced by the wave function

state vectolWr defined in the finite-dimensional linear space.
hesbasis can be any suitable finite ba@gy., the site basis

W(0)=",. €)

N Equations(7) and (8) describe the evolution of a quantum-
T(OU(t,N)=Au(t,r), (2) mechanical system with time. The classical one-dimensional
lattice-vibrational problem is equivalent to the quantum
eXiStS, and can be found fOI’ Certain |n|t|a| Conditions, eitherprob|em of an electron propagating a|0ng a chain of atomS’
analytically or numerically. If this is the case, we assume thaggch with a single orbitdl18].
the formal solution of Eq(l) also eXi.StS,' and can be written Our main task here is to find the solution of the problem
asu(t,H). One of the simplest realizations for the operatorgiven by Eq.(1) for a certain class of operatof$ (linear,

T(t) is a linear differential operator in the form Hermitian, and defined in the vector space spanned by a
) finite orthonormal basjsand T [the existence of the solution
T(t) = ay(t) ”7_+a (t) ﬁ+a (1) 3) of the auxiliary equatiori2) is required for an arbitrary time
2 g2 T gt TOh t, assuming the corresponding initial conditions and matrix

elements of the operatétf to be known. In what follows, we
with a,(t) being functions of time. pay more attention to the classical problem described by Egs.
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(4)—(6), bearing in mind that the quantum probl¢Bygs.(7)
and(8)] can be treated similarlj12—-14.

Ill. FORMAL SOLUTION

PHYSICAL REVIEW E 63 056706

tence only, i.e., the existence of the formal solut|@&ys.
(10—(13)] in the eigenvector basis. This formal solution is
actually independent of the basis and valid for any, e.qg., site,
representation of matrikl and displacement vectots|this

can be easily shown by applying a linear transformation to a

Let us consider, for definiteness, an equation of motion imew pasis, Eq(10), and that is why the basis superscript is

tions discussed in Sec. I,
a0+ a U+ (apg+H)u=0, (9)

with «; being constants. The initial conditions for E£§) are

given by Egs.(5) and (6). The solution of this problem can

be trivially found in the eigenvector basis,
u(t)=A(H;t)uy+B(H;t)vg, (10
with the matrix functions

expliw(H)t} —expliw,(H)t}
i(w1(H) —wy(H)) '

—wz(H)eXp{Iwl(H)t}+w1(H)eXp[l wz(H)t}
01(H)—wy(H) '

A(H;t)= 11

B(H;t)=

12

The frequencies,(H) and w,(H) obey the equation

1 H 2
wiAH)= 272{| al =\ = a?l+4ay(agl —H)}, (13

solution exactly in that basis in which thd matrix and
initial vectors are available. This is not a straightforward
procedure, because the matkixis not necessarily diagonal
in the available basis, so that the functioA¢H;t) and
B(H;t) in Eqg. (10) should be understood in terms of a power
series of matrixH. The question of how to choose the most
convenient expansions f@x(H;t) and B(H;t) is discussed
in detail below.

One of the other possible known ways not to use the
eigenvalues and eigenvectors lies in the time-integration
schemes for Eq1), the most popular of them probably be-
ing the Verlet method1] for the atomic dynamics problem
[Eq. (4)]. The drawback of this and similar approaches is the
small integration time step which is necessary to obtain an
accurate solution, and therefore the long computational times
required in order to evolve the system quite far from its
initial conditions(see, e.g., Ref$1,18,20,22,28. Moreover,
the standard integration schemes are quite gertergl, ap-
plicable for nonlinear operatots), and do not use the fact of
the existence of the eigenvalues and eigenvectors, making
them not very efficient for the system under consideration.
Below, we develop a fast time-evolution method which is

with | being the unit matrix. One of the useful realizations of free of such drawbacks, and which allows the time evolution
these general expressions is for the classical harmonic vibr&f the system to be calculated without small integration time

tional problem characterized by,=1 anda;=«¢=0 and

described by the equation of motidqd). In this particular

case,w; (H)==*iyH, so that
A(H;t)=cosHt, (14
B(H;t)=H"2sinHt, (15)

with the spectrum of the matrik lying in the interval\
€ [0\ maxl-

steps, and even to jump to the final stétsing only one
“integration” step) at a timet which is far away from the
initial momentty, €.9.,wma(t—to)=10%, with w,,,being the
maximum eigenfrequency of the system.

IV. CHEBYSHEV POLYNOMIAL EXPANSION

In Sec. Ill, we found the formal solutigrEgs. (10)—(13)]
of the problem given by Eq9) with initial conditions given
by Eqgs.(5) and(6) which allows, in principle, the state vec-

This is a standard approach to the problem given by Eqtor u(t) to be calculated at any moment of time. In order to
(1), which assumes a knowledge of the eigenvalues ando this in practice, we have to specify the way how to ma-
eigenvectors of the problem. In some special cases, e.g., foipulate the function®\(H;t) andB(H;t) defined with ma-
symmetric dynamical matrices describing crystals, the eigertrix arguments. The most straightforward way, on which the
values and eigenvectors can be solved analytically, but in théme-integration schemes are based, is to expand these func-
general case the analytical solution is not known and théions in a Taylor series arourie- 0. The series can be evalu-
eigenvalues and eigenvectors are available only numericallyated by a sequence of matrix-vector multiplications. This is

A direct diagonalization of the matriid (which could be

denseg is possible forN<10*. Approximate methodse.g.,
Lanczos[19]) allow sparse matrices wittN<10® to be

accurate for small values ofv,,t<1, but for wgt
=10-1G the inherent instability in the process of Taylor
expansion results in cancellations between successive terms

solved, but normally either only the eigenvalues and/or theind a complete loss of precision.
eigenvectors from a restricted range of the spectrum are An alternative way is based on an expansion in the eigen-

available(see, e.g., Ref420,21]). The calculation of all ei-

frequency domain. Let us tredfas a parameter, artd as a

genvalues and eigenvectors for large sparse matribes (matrix variable in the function&\(H;t) andB(H;t). These
=10P) is possible in principle, but requires a lot of compu- functions can then be expanded in a series of an appropriate

tational effort(time and memaory

complete set of functiong,(H) with time-dependent coef-

The key point of our approach is to avoid the calculationsficients. The choice of the basis set for the expansion is dic-
of eigenvalues and eigenvectors but to assume their exisated by the following requirements: the functiorg(H)
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should preferably be polynomials, since evaluating matrix 10°
polynomials requires only simple matrix operations; the
functions ¢,(H) need to form a complete set only over a
finite interval because the spectrumtbfis bounded; and the
coefficients in the expansion should be fast and easy to com-
pute. All these requirements are met by the Chebyshev poly- 107
nomials[9], T,(H")=cospcos *H’), which form a com- -
plete set for the matrixd’ if its eigenvalue spectrum is

0., 1=10

confined to the intervdl—1,1]; they are defined by the fol- 1o
lowing recurrence relations: .
To(H") =1, (16) *
Ti(H")=H", (17) 07 10 20 30 40 50 60
Tpsa(H)=2H'T(H')—=Ty_1(H'). (18) i

FIG. 1. The magnitude of the expansion coefficiefis)|, in

In order to use the standard Chebyshev polynomials, firsEd: (20 vs the ordemp of the Chebyshev polynomials for different
we map the Spectrum,; & [ A min,Amaid Of the matrixH onto evolu_tlo_n timest as indicated(with w,,=2 as for a D ideal
the interval[—1,1] by the following linear transformation;: ~ tomic linear chain modg|

IH—=(NoA N ) computational performance, so that for a sparse métrike
, ( max mln) . . . . .
= . (19 computing time scales linearly with the number of variables
)\max_ 7\min O(N).

The infinite limits in the series in Eq§20) and(21) have
Qeen replaced in Eq22) by finite valuesP— 1 for the maxi-
mum order of the polynomials. In order to assess the validity
of this, we have investigated the dependence of the magni-
tude of the coefficienta, andb, on the polynomial ordep
in the case of the classical harmonic vibrational problem

o characterized by functions(H;t) andB(H;t) given by Egs.
AH:D)=> a () TH(H"), (200 (14) and (19). It appears that, at fixet the coefficientsa,,
p=0 andb,, first oscillate with increasing and then decay expo-
nentially with further increase qf (see Fig. 1 for the choice
” of parameters appropriate to the particular case of a linear
B(H;t)= ZO bp(t) Tp(H"). (21)  harmonic atomic chajn Such a behavior of the coefficients
- a, andb, with p allows us to truncate the series in Eg1)
The coefficientsa,(t) and by(t) for the desired evolution at a certain ordeP of_the polynpmials.sych that the contri-
time t can be easily found using the orthogonality of thebUtFon from_gucc_eedmg terms is negligible. A suitable trun-
Chebyshev polynomials and fast Fourier transformatiorfation condition is
(FFT) methods(see the Appendix The coefficients are in-
dependent of the concrete form of the matHx(only the max{|ap(t)|,[bp(t)[} =, (23
spectral bounds\ . and \ i, enter the expressions for

then‘),. and are d(Aaf|r_1ed mainly by the form of the time- exponentially forp>P with a typical scaleSp~1 (see Fig.
evolution operatof, i.e., by the concrete form of the func- 1) “the rest of the series can be estimated to be not greater
tions A(H;t) andB(H;t). This ensures the generality of the thane 8 .
method. o Condition (23) can be solved for the optimal number of
Once the coefficienta,(t) andb,(t) are found, the solu- Chebyshev term®. The value o depends 0wt (with
tion for the state vector at an arbitrary tirhean be written — \m) and on the tolerance. The behavior of
max ma "

The upper and lower bounds,,, and A i, to its spectrum
can be easily estimated by different methods, e.g., by th
Gerschgorin circle theorefi9].

The functionsA(H;t) andB(H;t) can then be expanded
as sums of Chebyshev polynomials of the new mattix

with & being the error bound. Aa, andb, decay roughly

as follows: P(wmad) for differente is shown in Fig. 2. For practical use,
P—1 P_1 these curves can be approximated by the empirical expres-
u(t)=( > ay(OT(H) [up+ |t by(DTH(H") |vo. sion
p=0 p=0
(22) P(Vy\maxt|8):_a(s)ln(8)+ﬁ(8)(V)\ma><t)
This expression is the solution of the problem and is a key + (&) (VA mat) @, (24

point of the FEM. We should stress that the polynomials
Tp(H") actually enter into solutiof22) as products with the with the parametersy(e), B(e), 1(e), and &) depending
initial vectorsug andv,. This fact significantly improves the slightly on e [see Figs. @) and 3b)]. The number of poly-
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FIG. 2. The number of Chebyshev polynomials uggdagainst FIG. 4. The “time evolution function”A(\)=cosyXt (thick

the productw,,¢, for different error bounds. For smallwy,d, the  solid line) and its approximation by tenP(= 10) (dashed lingand
graph is nonlinear, but as.,,t—, P becomes approximately pro- 12-term (P=12) (thin solid line Chebyshev series, and by an 11-

portional towp,d. Increasinge has the effect of increasif@by a  term Taylor seriegterms up tox'® (dotted ling] for t=10 and
roughly constant amount. Nmax=4-

r]omiaIsP used in Fhe expansion not surprisin_gly grows with 4ashed curve in Fig.)4or the functionA()\) = cosyt [see
time, and the maximum order of the polynomiatsimber of  £q (14)] entering the solution, and compared it with the
roots of the polynomialcan be estimated as the number of known exact behaviofsee the solid curve in Fig.)4or the
oscillations with a typical frequenay, =\, in timet, i.e.,  particular values =20 and\ ,,=4. As seen from Fig. 4, the
Chebyshev expansion with= 10 polynomials mainly repro-
duces the shape of the function cdst in the whole eigen-
The typical frequency is normally of the same order as the/@lUe range. FoP =12 the agreement is much betfsee the

; _ ; thin solid line in Fig. 4, and for P=15 the difference be-
maximum frequencyw, = , with x~1. In the case of ' , -~ P
a linear chainq the \)//;ﬁe &a)igar)(oughly);zﬁ(s)wzl.G' see ween the Chebyshev expansion and the exact function is not

Fig. 3(@. The computational time for the coefficierds and seen by eye(P=25 is more appr(_)priate for practical use,
b, scales asO(P log, P) and is negligible in comparison aI;o see Elg.)ZThe_Taonr expansion can ?ISO be .used to fit
with the matrix-vector multiplication timésee below. th'_s function. Keeping the _terms up ©(\™) (which re-

In order to illustrate how the Chebyshev expansion fitsJuires the same computational time as for the Chebyshev

solution (10), we calculated the Chebyshev serighe ©XPansiol we obtained the dotted curve in Fig. 4. This
clearly shows that the Taylor expansion is accurate at small

P=~w,t/m for P>1. (25)

0.8 , , , \ but diverges catastrophically for larger In contrast, the
() error in the Chebyshev approximation is spread uniformly
06 B ] over the whole spectrum. This demonstrates the superiority
o of the Chebyshev approximation over the Taylor series.
o5 04t :; < 1 The FEM can be easily generalized for the classical har-
3 s monic vibrational systerfisee Eq(4)] subject to an external
02 o 1 force field, H*(R; ,t), with R; characterizing an equilibrium
0 W position of atomi, so that Eq(4), can be rewritten as
ol (b) | i+Hu=CH™(R, 1), (26)
> 4l v ] with C being a coupling operator described by a coupling
matrix C of the external field with the system. In the case of
ol ] the electromagnetic field, for example, this matrix contains
atomic charges. If the interactions are local, thenG@hma-
110_16 10_-12 10‘_5 10-_4 trix contains nonzero elements mainly around the diagonal,

while in the case of nonlocal interactions the nonzero ele-

ments can be distributed over the whole matrix. For definite-
FIG. 3. The dependence of the coefficieats, v, and§, in the ness, we consider an external field of the form

empirical equation(24), for the maximum number of Chebyshev

zsgnomlalsP on the error bound:. The lines are guides for the Hext(Ri ,t):; fth(Ri)exp[iwjt}, (27)

error bound, ¢
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with fth(Ri) being time independent. Assuming the samebe followed by step-by-step integration with the required
initial conditions (5) and (6), it is straightforward to show number of steps to reach tinte
that the formal general solution for the displacement vector Therefore, the formal solutiofEq. (10)] can be repre-

is the sum of Eq(10) and the particular integraljp,, sented as a polynomial in the mattik and, in fact, all the
time-integration schemes including the original Verlet algo-

1 . rithm and all its variantde.g., high-order Runge-Kutta al-

UP'(t)_Ej: H— o, {exp(let)—cos\/ﬁt gorithms and explicit predictor-corrector schentsse, e.g.,
Ref.[1]) are based on it. For the sake of comparison with the
—iwjtsinc\/ﬁt}éffX‘(Ri), (28 FEM developed above, in this section we consider one of

them, namely, the standard Verlet integration scheme applied
if none of the external frequencies coincides with any of to the evolution of classical harmonic systems.
the eigenfrequencies of the matiik for the homogeneous For the system we have described abé@g., harmonic
problem, and atomic systems the Verlet algorithm readésee, e.g., Ref.

[1]
t . f A~ £ ex
Upi(t) =2, Zim{expwﬁw—smcmt}cn (R) U 1= (21— PH)u s, (34)

(29

) ) . whereu; is the displacement vector at tinte j 7 for a time
otherwise. The particular integral88) and(29) can then be  stepj of length 7. This is actually a triple recurrence relation
easily expanded in Chebyshev polynomials in a similar waysery similar to the Chebyshev polynomial recurreriés.
to that described above for the homogeneous problem.  (18)].

As mentioned above, the FEM can also be readily ex- | et us choose the displacement veangt) to be one of
tended to the linear quantum-mechanical problem describeghe eigenvectors of the system corresponding to the eigenfre-
by Egs. (7) and (8), for which the formal solutions for guencyw=X. In that case, we know exactly how it evolves
W(t)=w,(t)+i¥,(t) can be written as with time, i.e., u(t)=C, exp(iwt) + C_ exp(—iwt) where

_ . the constant vector§.. are defined by the initial conditions.
(1) = (cosHOW,(0) +(sinHOW,(0), (30 Then we can compare this exact solution with that obtained
—(ai using the Verlet scheme. In order to find the solution of Eq.

W ()=~ (sinHHW,(0) +(cosHHW, (0). (3D (34), first we replace the dynamical matrix there by the
The functions cosit and sirHt can then be easily expanded corresponding eigenvalue. Then the general solution can
in Chebyshev polynomials in exactly the same way as abovee found in the forni10]

(also see Refd12-14). _ ,

The fast evolution method can be also used as an elemen- U=C(u)!+C (), (35
tary single-step calculation procedure in the integration algo-
rithm, but the time step—t, can be arbitrary. This means with w. obeying the equation
that the efficient integration method based on the Chebyshev

polynomial expansion can be used to solve the equation of 6> 6%\ 2112
motion for the systems in question. It appears to be much Me=1- ji'[1_<1_ 7) }
faster and more accurate than other known schemes, e.g., the
Verlet algorithm(see below. e i
=1xifg— g+, (36)

V. VERLET ALGORITHM

An alternative way to use the formal solutifq. (10)]is ~ With 0= ‘/XT.: w7 and|u.|=1. These valueg . have to be
compared with the exact solution

to expand the functions entering it in a Taylor series, e.g.,
aroundt=0. For example, in the case of harmonic vibra- s 3 PR
tions, the functions (cogHt)u, and (sinc/Ht)v, entering 1S X+ i)~ 1+i0— a_Iﬂ_i_ e_ii
Eg. (10) [see Eqgs(14) and(15)] can be expanded as - 2 6 24120

t2 t4 87
_ o o y2
(COS‘/ﬁt)UO_UO 2 Huo+ 24H Yo, (32) As follows from a comparison of Eq€36) and (37) for
small <1, the functionsu- andx®**'match up to the term
2 4

i t 5 in O(#?). This is an indication of the low-frequency and/or
(sinc\Ht)vo=vo— B Mot 5H Vo= (33 short-time accuracy of the Verlet algorithm. The gain error
per step, being proportional to the deviation of the absolute
The matrix-vector multiplications involved in Eq&2) and  value of . from the unitary circle, is zero for the Verlet
(33) make such an approach computationally effici@spe- algorithm, becaus¢u.|=1; therefore, the energy is con-
cially for sparse matriceld) at smallt, when just a few(two  served for this scheme. On the other hand, the argufent
or threg terms can be kept. The evolution with time can thenof u. =|u.|exp(i®.), defined by the equation
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3r l l l 1 A®max_ €max

(41)

/ Omax Omax]

s In order to obtain concrete numbers for estima# and
. . (41), we have performed2] simulations for the simplest

g harmonic atomic system, a perfect linear chain of at¢ses
s below) with the typical valueso,,=2 andT= 10 000. If we
] chooser to be the standard value of about 1% of the period
# of the fastest eigenmodd 8], i.e., 6,,,~0.063, then, from
Eq. (40) we obtain an estimate,,,,~3.3 which is not good
at all. Conversely, if we demand reasonable values such as
0 . . . e=10"2 and §~103, then the number of steps required is
0.0 0.5 1.0 1.5 20 N,=2x10". This means that the Verlet algorithm can be

8 fast or moderately accurate, but not both. The FEM devel-

oped above is free of this drawba¢kee Table | beloy

phase, ©,

FIG. 5. The phas® . vs 6= wt for the exact solutior® , =6
(solid line), and the Verlet method given by E@8) (dashed ling
VI. IMPROVED VERLET METHOD

2
O.=+cos1- 0_) (39) The reason for the great popularity of the Verlet algo-

2 rithm, besides its simplicity, is related to the associated en-
ergy conservation, i.e., zero gain erf@ee Sec. Y How-

does not coincide with the exact solutid®Z°*=+ 6 (see  ever, the phase error in the Verlet algorithm can be actually
this difference for® . in Fig. 5), and this is a source of the not negligible at all if the parameters are not chosen prop-
phase error in the Verlet scheme. The deviatiomeresti-  erly. Proper choice of the parameters requires a very small
mate becomes appreciable fé= 1. Moreover, forg>2 the  time step, which is not very desirable for practical purposes.
solutionsu. become real, and one of themx () diverges To avoid this drawback, we see the following way to im-
exponentially. This restricts the possible valuesfafo be  prove the Verlet algorithm for harmonic systems.

0< 6, =2. Thus the maximum possible time step in the Our aim in improving the Verlet scheme is to reduce the
Verlet algorithm is phase error while preserving the zero gain error. A straight-
forward way of doing this is to find an expression fofsee
2 Egs.(35) and(36)], which is as close ta.**®®as possible. If
[ (39 |uw-(60)|=1, then u.(6) must be of the formu.(6)

w
e —f(6)=iy1—f(6)2 The function f(d) for the original
with wq,qx being the maximum eigenfrequency in the spec-Verlet algorithm is given by Eq.36). A logical improvement
trum. bringing it closer to Eq(37) is
Let us estimate the maximum phase errA® ..

=0, (6na) — Omax (the estimate with® _ is similar experi- 0> o 6> 9*\2]Y2
enced by the fastest eigenmode, Whefg,= wma, 7. Suppose pe(0)=1- > T ogtl 1- ( 1- PR
that the total time of the run containifg, steps isT. Then
the total phase erros,,,, accumulated by the fastest eigen- —1xip— 0_21@+ 0_4+E+... (42)
mode during the course of the simulation, is - 2 6 247144 '
e “NAO -~ TAmax (40) so that this expansion coincides with E®7) up to and
maxs T A EmAE g ax including termsO(#*). Rearranging Eq(42) to eliminate
the square root leads to a quadratic equatiop i(with the
or roots w-):

TABLE I. Comparison of the performance of the simple Vetleap-frog method and FEM for the time
evolution of aéfunctional displacement perturbation in an ideal linear harmonic atomic chain.

Quantity Verlet Verlet Verlet FEM FEM FEM
Time stepr 0.01 0.1 1 1 10 4000
Number of stepN, 4x10° 4% 10" 4x10° 4x10° 400 1
OrderP for FEM - - - 9 25 4105
CPU/R10 000 time(seq 760 77.0 54.4 217 49.7 18.7
€ 5.5x10 2 0.82 0.98 9.5%10 1% 8.4x10°'® 1x10'?
€qain —-5x10% —-4x10% 2x10% -5x10% 5x10% -—1x10%°
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2 gt positions. We have studied2] the evolution of the
M2—2< 1I-5+ ﬂ) pu+1=0. (43 sfunctional perturbation in this system described by the fol-
lowing initial conditions:
Comparison of Eqs(43) and(34) shows that it corresponds
to the triple recurrence Un(0)= 6y, (48)

2 4

T T 2
Upi1=2| 1= 5 H+ 57 H? JUp =ty (44)

01,(0)=0. (49)

This choice of the initial conditions has been dictated by two
where for the sake of generalitfhe displacement vector reasons:(i) such a displacement pattern contains all the
need not be necessarily an eigenmodie eigenvalue has eigenmodes of the system, afit) the solution(the Green
been replaced by the dynamical matrix. The extension of th&unction) is known analytically(see, e.g., Ref16]), namely,
second term in Eq44) to higher orders in(H7) shows that

this is just a Taylor approximation to cq¥ir, so that the Un(t)=J2n(21), (50)
improved triple Verlet recursion can be written as .
i Un(t) =J2n-1(2t) = J2n41(21), (51)
Ups1=2(cosSyHT)U,—Up_1. (45)
n noon with J,(x) being the Bessel function.
In a manner directly analogous to the FEbke Sec. IV, The exact solutioru®@(t), given by Eq.(50), can be

we could approximate (cofH7)u, in Eq. (45) by a trun- compared with the results of either the Verlet method,
cated Chebyshev polynomial expansion. This would produce"®(t), or FEM,u"™(t), thus allowing us to judge the qual-
a phase error more uniformly distributed over the spectrunity of these approximate methods. The deviations of the ap-
of H (see below for a comparison of the phase errors proproximate solutions from the exact one are characterized by
duced by different methodgls the difference errore=|u®*-u| and the gain errokgs,
This improved method has two drawbacks. First, the only= (|u|/|u®@})—1 (with u=uFE™ or u=u"®"). It may seem
way to obtain the velocity, is by differentiatingu, numeri-  strange that, although the Verlet method is supposed to have
cally. This is notoriously unstable for large Therefore, itis  zero gain error, we obtained errors of the order of Lfiom
necessary to run a separate recurrence to fipdstarting  the simulation(see the values afy, in Table ). This is due
from vy andv;. Second, the starting conditions for a simu- to the “starting” and “stopping” errors. They are related to
lation are usually supplied ag andv,, butu; andv,; must  the inevitable introduction of some gain errors when convert-
be computed accurately before the triple recurrences can beg between the initial conditionsug,vy), the quantities in
launched. The best way to do this is, once again, to use thide Verlet recurrence u(,u;,,), and the final quantities
FEM itself. The only possible advantage of the improved(uy,vy ), even though the recurrence itself is gain free. In

Verlet method over the FEM s that it appears to guaranteghe case of the FEM, it is difficult to separate the gain and
energy conservation. However, due to the problem withhhase errors, and it is sufficient to consider the total esror
launching, we found the energy conservation of the im-yhich is typically very smalle~10"°—10"15 (see Table)l
N=10* atoms and=4000 (wm,=8000). The results pre-
VIl. PERFORMANCE OF THE FAST EVOLUTION sented in Table | and Fig. 6 show that the FEM is much
METHOD: GREEN FUNCTION OF A LINEAR CHAIN faster and much more precigef. Figs. @b) and Gc)]. In-
- deed, the Verlet method can be either relatively fast but not
In order to compare the performance of the original Verlet . . ) .
) recise(see the third column of Table or relatively precise
and FEM schemes, we choose one of the simplest mecharii- . : )
ut slow (see the first column Table In comparison with

cal models, namely the linear one-dimensioaD) har- he al ) f inal <t col d
monic atomic chair(see, e.g., Ref§16,18, and references the always precise, very ast single-siepah colum) an
X ' S relatively fast, multiple-stegfourth column FEM. As fol-

therein. Newton’s equations of motion for such a model lows from Table I(cf. the fourth, fifth, and sixth columns

read the strategy in accessing the best performance for the FEM is
d?u, oV to choose the smallest number of integration steps, prefer-
TR (46) ably just a single evolution stefsixth column, to the de-
n sired timet.
with the potential energy given by The dramatic increase in speed for the FEM is related to

the relatively small number of matrix-vector operations
. 5 needed as compared to the Verlet scheme. The leapfrog Ver-
V= E; (Un=Un+1)%, (47) let algorithm has one such operation per step, so that the total
number of matrix-vector operations,,, for time T is esti-

assuming that all masses,=1 and spring constants,  mated to beNys''= 16T for a conventional choice of

=1. The atoms in the chain are equidistantly positioned athe parametersy=0.01X 27/ wpmay and NY'=N =T/,
Xp=na (n=1,... N, a=1) with periodic boundary condi- On the other hand, the number of matrix-vector operations

tions, andu, are the displacements from these equilibriumper step for the FEM if[="=2P—1. The maximum order
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FIG. 7. Computational timd ¢y, (CPU/R10 000 in seconds

FIG. 6. Displacement patterithe displacement; of atomi vs  against the achieved difference erepfor the FEM(solid line) and
its equilibrium coordinatd?;=i) for a &functional initial displace-  Verlet (dashed lingalgorithms applied to describe the evolution of
ment perturbation ait="5000 in an ideal linear harmonic chain of a &functional perturbation in a linear atomic chain, as described in
10* atoms atwma,t=4000: (a) the exact solutionu®; (b) the  the text. The parameters of the model are the following: number of
difference between the approximate solution obtained by the VerleastomsN= 10 000, total evolution tim& =500, and maximum fre-
method(with the integration time-stem;=0.01 and the number of quencywma,=2.
stepsN,=4x10°) and the exact solutiony,’*"— u®?®; (c) the dif-
fer_ence b_etween_the _approximate solution obtained by the FEMhe solution of which with respect thl, gives the propor-
(with the integration time step=4x10° the number of steps, tionality NTw(wmaXUSIZGr;;QZ_ Therefore, the total computa-

N,=1 and the ma’ﬂg&“m eg;gf-‘f of the polynomial=4103 and  {jsn4| time scales as the inverse square root of the error:

the exact solution; u;
TeomN(@mai)*2enal (54)

of the Chebyshev polynomials B= y ® T/ 7~ wmax] [SEE

Eq. (25)], and bearing in mind that only one time step can be On the other hand, the total simulation time for a single

used to evolve the system for tinie we find thatN[;"'  step FEM can be estimated &,m7NP(e), where the

=l omad/m With the numerical factoZ~1, i.e., approxi- maximum numberP of the polynomials in the expansion

mately an order of magnitude faster than the Verlet schemdepends essentially logarithmically on [see Eq.(24)],

(as follows from Table )l Furthermore, whereas the Verlet which is much slower than the power-law dependence on

method introduces an accumulated phase error of the ordéor the Verlet algorithm given by Eq(54) (see Fig. 7.

of 1 rad into the fastest eigenmodes, the Chebyshev methdgough estimates of RAM and CPU time requirements for a

is essentially exact. vibrational problem in a 3D cubic lattice of 1@toms are 10

The advantage of the FEM can also be demonstrated b§b and 10 HR10 000 for w ,at=10%.
different scaling laws for the computational time with re-
spect to a required error. In order to show this, let us find the /1. APPLICATION OF THE EAST EVOLUTION

dependence of the computational tinig,y,, on different METHOD TO WAVE-PACKET PROPAGATION
values of the total phase erref,.[see Eq(40)]. The com- ) o o
putational time is proportional to the number of variabds, The behavior of waves propagating in disordered media is

(for sparse matricesand to the number of simulation steps, Of widespread interesf7]. In particular, the problem of
N,, i.e., Teoms*NN,. The number of simulation steps, being atomic-vibrational, plane-wave propagation in disordered
the ratio of the total evolution timeT, to the length of the Systemd24], e.g., amorphous solid25], and the concomi-
step, 7, can be estimated, with the use of E89), asN tant loffe-Regel crossover between weak- and strong-
=T/ 7~ wyaT Opax. T phased, is related to the phase Scattering regimef26], is of considerable importance in un-

error per stepA® ..., by the expansion in Eq38) for 6 derstanding the vibrational behavior of such materials.
=0,.,<1, ie. emaxjA®l/3 so that Wave-packet propagatidri 8,27 is pehaps of even greater

maxe interest, because it impacts directly on experimental quanti-

N ~w - TAG-L3 (52) ties such as thermal co_nductivity_of disordered materials
Toomax max [28]. In perfectly crystalline materials, wave packets can
only propagate ballistically: the center of a launched wave
packet moves relative to the medium, even though the width
increases with time due to dispersion. In disordered materi-
)_1,3 als, however, where disorder-induced scattering always oc-

Bearing in mind relatior{40), we can rewrite Eq(52) as an
implicit equation forN

N _~ | Lmax (53  curs to a greater or lesser extent, as well as ballistic motion,
7 @max! | T C g ;
T wave packets can evolve in time in two other completely
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different ways. The evolution may be diffusive.e., a *?
random-walk-like behavigr After ballistic propagation of a
launched wave packet over a distance of a few times the
mean free path, multiple scattering becomes significant, anc
a diffusive behavior occurs, in which the center of the wave
packet remains stationary, while the width increases as the
square root of elapsed time. For a sufficiently large degree o
disorder, a wave packet may even become localizdien
the majority of the eigenmodes making up the wave packet
are localized, in which both the wave packet mean position
and width become time independent. However, simulation of
wave-packet propagation by using, e.g., the Verlet algorithm
[18], is very unsatisfactory, as discussed in Sec. V. In this
section, we consider the use of Chebyshev-polynomial FEM
to simulate wave-packet propagation in a model disorderea
medium, as an example of the applicability and usefulness of FiG. 8. visualization of a typical initial longitudinal wave
this approach. packet created at the body center of the simulation box containing
The system studied was a harmonic fcc lattice containingox 30x 30 cubic nonprimitive unit cellgfour atoms per unit cell
NXNXN atoms with periodic boundary conditionsN(" of the fcc lattice. The squared displacementsu?, are shown,
=120) connected by springs characterized by spring conprojected onto thex—y plane.U§y=En|Un|25(X—Rnx)t?(y—Rny),
stantsk. Disorder was introduced in the model in the form of ysx—y coordinates of the unit cells. The parameters describing the
cellular (lattice) disorder via a distributiorp(x) of spring  initial Gaussian wave packet at=0 are the positionR,
constants. The force-constant probability distribution chosen- (15,15 15), the Gaussian width tentp =3I, the average wave
was a boxuniform) distribution, centered at a valug, and  vector k,=(1,0,0), the phase velocity,=(0.64,0,0), the group
with a width A, i.e., k e[ ko— Ak/2,kg+ Ak/2]. This type  velocity vg=(0.64,0,0), and the polarization vectdr=(1,0,0.
of model reproduces essential features of the vibrational be- o ) ) -
havior of real amorphous solids, such as the Iow-frequenc{/Or the initial velocity vector. The atomic velociti¢g,) de-
boson peak in the vibrational density of staf28,30. ermine the d|rectlon of travel of the wave packet, and to
In order to investigate the time evolution of the vibra- c@lculate them requires a knowledge of both the phase and
tional wave packet, first we have to construct it, i.e., to9rOUP v_elocmes. Failure t(_) take th_ese m_to ac_cognt correctly
specify the initial conditions of the problem. There is a cer-fesults in a wave thae.g., in one dimensigrsplits into two
tain degree of freedom in choosing the shape of an initiaParts, traveling in opposite directions. In order to eliminate
wave packet. Here we consider only spatially Gaussian wavguch unwanted reflections of the wave packet completely, it
packets, but even for these there are a number of adjustapfgnecessary to take higher-order derivatives of the dispersion
parameters. Such wave packets can be described by théflationw(k) into accountthe group velocity being just the
amplitude|U|, mean positiorR,, mean wave vectok,, a  first derivativg. A typical initial wave packet, which was
“width” tensor Wy, and for vibrational excitations, a polar- Propagated by the FEM, is shown in Fig. 8. ,
ization (contained in the amplitude vecttl, a phase veloc- Once the initial wave packet is constructed, it can be
ity v,,, and a group velocity, . Below we study only spheri- propagated forward in time using the FEM. Before doing
cally symmetric wave packets, witho=W,!, whereW, is this, first let us specn‘y_the physical characteristics of the
the width of the wave packet along any direction whichWave packet we would like to follow. Thesg are.the average
obeys the restrictiona<W,<L, wherea is the lattice unit POsition (R(t)) of the wave packet, and its widt/(t).
cell size andL is the box size. Obviously, the largev, is, Their definitions for the electron case azre opwous and are
the smaller the spread of the wave packet in recipracal related to the probabilitieB,(t) =|(n|#(t))[* to find an elec-
space, and vice versa. Therefore, the initial wave packet caifon on siten, so that
be written in the form.

o - M w M

w
o

) . 2 Po(ORy
lug)=Re> U ex;{iko- Rn— E(Rn—Ro)Waz(Rn—Ro)hn) (R)=— ' 57
n
(55 2. Pol®
for the initial displacement vectdn runs over all the atoms  The width of the wave packet can be defined via a variance
in the systeny and tensorV,
N
- _ V=(R(HRT(t))—(R(t))(R(t
. 2, Py(ORR,
Xexr{ikoRn—E(RH—RO)WEZ(Rn—Ro) In) =——(RIOXR(D) (58)
P.(t
56 2 Po(t)
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(RT stands for a transposeD-dimensional vectoras a % 12 @

square root of its trace, os

W=D 1Trv. (59 0.4

These definitions hold true for the vibrational wave packetas °
well, but the meaning of the probability,, is different. In
the case of atomic vibrations, the valBg is associated with
a local vibrational energj18] and one of the possible ways
of its definition is the following27]:

30

Po=3Knlv())P+ 3 (u(t)[n)(n|H[u(t)).  (60)

Here H stands for the dynamical matrix with ele-
ments, H,,, which are DXD matrices [16],
Huanrg= (1/2) (knnr I VMaMin ) [ (R = Rp) (R — Rn),B/| Rm ‘
—Ry|?], with k., denoting the spring constant between at-
omsn andn’ having massem,, andm, ; the indicese and

B run over the Cartesian coordinates. 04

As a test of the efficiency of the Chebyshev-polynomial-
based FEM as applied to wave-packet propagation, we hav:
investigated the time-evolution behavior of frE&8] (and
driven [27]) atomic-vibrational wave packets in a fcc disor-
dered lattice characterized by different values of disorder
(different Ax) and also electron wave-packet propagation in
the same lattice described by the Anderson-model Hamil-
tonian[5]. Below, we discuss only the results for free vibra-
tional wave-packet propagation. Initial free longitudinal-
acoustic(LA)-like vibrational wave packets were generated,
with average wave vector and polarization in, say, xf-
rection. The phase and group velocities requifede Eq. z 4 _ ©
(57)] were obtained from the (k) dispersion relation calcu-
lated for the fcc crystal: the LA branch is almost linear be-
tween thek values(0,0,0 and (7/a,0,0).

The results of these FEM simulations for wave packets
characterized by different initial average wave vectiogs
and propagating in structures with different degree of disor-
der, Ax/ kg, are presented in Figs. 9—11. A wave packet
characterized by a relatively small initial average wave vec-
tor, ko=(1,0,0), propagates in crystalline and not very
strongly disordered medi@ «/xy=0 and 0.5, respectively
in the ballistic regimgsee Figs. @) and 9b)]. Indeed, both
the average position of the wave packet and its width scale
almost linearly with time{R,(t))ot andW(t)t [see Figs.
11(a) and 11d)]. The “wraparound” effects are evident in

the wave-packet profile due to reflections from the bound- FIG. 9. Visualization of the time evolution of a free longitudinal
. . . . . vibrational wave packet with an initial average wave vedtgr
aries of the simulation box. Increasing the disorder to=(1,O,0) in a 330x30 unit cell(cubic nonprimitive fcc lattice,

Axlko=1.0 results in a deviation from ballistic behavior and calculated using the FEM dt=15 in structures characterized by

3 startdof the cfror?sover to the d|_ff_u3|vef rre]glme,kl.e., tge t_'medifferent degrees of disorde@ The wave packet in a disorder-free
ependence of the average position of the package begins (tRK:O) crystalline lattice. The extra structure in the wave packet

deviate from linearityfsee the QOt—dashed line in I.:i.g..(m)ﬂ shape is due to boundary-induced wraparound efféatsand (c).
and the shape of the packet is changed as well; it is appréme wave packet in a force-constant-disordered lattice with
ciably broadened and elongated, see Fig)]9 Akl ko=0.5 andA k/ ko= 1.0, respectively. The axis notations and

~ The diffusive character of propagation is enhanced withthe parameters of the initial wave packet are the same as in Fig. 8.
increasing both the initial average wave vector and the de-

gree of disorder. Indeed, the wave packet characterized byent, (R,(t))=const, and the wave-packet width scales
ko=1(2,0,0) propagates through the disordered medium witlwith time as =t?) [see the dot-dashed lines in Figs.
Aklky=2.0 in the diffusive regim¢see Fig. 1(@)]. In this  11(b) and 11e)]. At higher values ok, the diffusive be-
regime, the wave packet average position is time indeperhavior is even more pronouncésee Figs. 1) and 11d)].

08
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FIG. 11. Trajectories of the average positioia)—(c)] and
widths [(d)—(f)] of longitudinal vibrational wave packets propagat-
ing in a lattice containing varying degrees of force-constant disor-
der Ax/kq, as marked, and for three initial average wave vectors
ko, as markedthe other parameters are as in Figs. 8 andT@e
turnover in the curves is due to the boundary-induced wraparound
effects in Figs. 9 and 10.

and transverse components are present in the wave packet
after a certain time (Fig. 12.

IX. CONCLUSIONS

We have developed a Chebyshev-polynomial-based fast-
evolution method for classical and quantum linear dynamical
systems. The method requires the existence of eigenfunc-
tions and eigenvalues of the problem, but does not require
them to be computed explicitly. It uses only the interaction
operator in matrix form, and initial conditions. The key point
of the method is related to a polynomial expansion of the
formal solution at an arbitrary time These polynomials are
defined in terms of the operatofmatrices, but the coeffi-
cients are scalars depending on time and are independent of
the type of variables for the polynomials. The fast-evolution
method is computationally efficient, and can be used for
large systems containing up to “1@articles. It differs in
principle from the standard time-integration schen(es.,
Verlet), and appears to be much more accurate and faster.

The fast-evolution method is general and applicable to

FIG. 10. Visualization of the time evolution of a free longitudi- many physical problems. We have investigated the perfor-
nal vibrational wave packet with an initial average wave vekr mance of the method by analyzing a classical one-
=(2,0,0) in models characterized by different degrees of disordergimensional atomic harmonic system. Extension of the
(@) Ax=0, (b) _Axfo.s, and(c) Ax=1.0. The other parameters are method to the solution of the diffusional and wave equations
the same as in Figs. 8 and 9. is also quite straightforward. We have also demonstrated the

use of this method to the problem of wave-packet propaga-

The other effect which is typical of wave-packet propaga-tion in disordered structures.
tion in disordered media is a mixture of polarizatigrs]
which is due to disorder-induced hybridization between dif- ACKNOWLEDGMENTS
ferent branchef30]. Indeed, although the initial wave packet  The authors are grateful to Professer T. Nakayama for
launched was purely longitudinal in character, the time-grawing their attention to Ref10]. We also thank Jon Lud-
evolution  simulations show that disorder-induced|am and Gana Natarajan for their assistance in the computa-

longitudinal-transverse scattering occurs for the propagatiotions. Y.L.L. is grateful to Trinity College, Cambridge, for
in the force-constant-disordered lattice, and both longitudinathe provision of a summer studentship.
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- . . . . 30 coefficientsa; in Eq. (9) are real, then below we understand

(@) A(H®) andB(H?®) as their real parts. In the case of complex
coefficients, the real and imaginary parts of these functions
can be treated separately, as demonstrated at the end of Sec.
IV Transformation to the eigenmode basis, e.g.,

ET'A(H)E=A(H®) =] "a,() T,((H9)'), reduces the

y problem to polynomials defined in terms of scaldrs(\ ),
i.e., in terms of the diagonal elements of the maktix This
means that the coefficiensg,(t) andby(t) can be evaluated
from the following relations for the functions defined in

i 1° terms of the scalar variables:
0 5 10 15 20 25 30° .
A= 2 ap(Tp(\), (A1)
p=0
T T T T T 30
(b) P-1
i 125 B(\;t)= 2 bp()Tp(N'), (A2)

where\’ is a scaled and shifted version ®fe [ A ninMmax]
y designed to fall within the range-1, 1],

I 2)\ )\ +)\ i
)\ r_ _ max mln’ (AB)
)\max_hmin )\max_hmin
i 15
which is similar to Eq(19).
, ! ! ! . Consider, for example, the expansion :
0 5 10 15 20 25 300 P P AN
P-1 P-1
. : : : ; 30 AND= 2 a()T(N)= 2, ay(t)cogpcos ).
(c) p=0 p=0
i {25 (A4)

In order to find the coefficientg(t), it is convenient to
sample the continuous variablg=cos (\') at P discrete
points, and introduce a new discrete variaipefined by the
relationg=P ¢/, so thatq=0, ... P—1. Multiplying Eq.
(A4) by the polynomialsT,,(q), and using the orthogonality
property

2 To(@)Tp(a)=> <1+6p,o)P, (A5)

(=]

FIG. 12. Longitudinal-transverse scattering in the time evolutionwe obtain the following relation foa,(t):
(at t=15) of an initially longitudinal vibrational wave packék,
=(2,0,0) (the other parameters are as in Fig], §ropagating in a
force-constant disordered 3B0X30 unit-cell fcc lattice A «/«xq ap(t)= (1+ Sp0)P ¢ E A

=0.5). Contour plots of the squared displacements projected on the
— 7q || mpq
X|[{N+ANcO ) ;tico B | (AB)

x—y plane(as in Fig. 8 are shown.(a) Total displacementsb)
Longitudinal displacementgc) Transverse displacements.
with A = (A naxt Amin)/2 and AN = (\ pax— Amin)/2. This ex-

In this Appendix we demonstrate how the coefficientspression is in fact a discrete cosine transform, and can be
ay(t) andby(t) in expansiong20) and (21) can be evalu- easily computed using the FFT algorithm. The coefficients
ated. Let us consider the functioA$H®) andB(H°®) defined by(t) are calculated similarly, exchanging the function
in terms of the matrices in the site representation. If theA(\;t) for B(\;t).
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