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Fast Chebyshev-polynomial method for simulating the time evolution of linear dynamical system
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We present a fast method for simulating the time evolution of any linear dynamical system possessing
eigenmodes. This method does not require an explicit calculation of the eigenvectors and eigenfrequencies, and
is based on a Chebyshev polynomial expansion of the formal operator matrix solution in the eigenfrequency
domain. It does not suffer from the limitations of ordinary time-integration methods, and can be made accurate
to almost machine precision. Among its possible applications are harmonic classical mechanical systems,
quantum diffusion, and stochastic transport theory. An example of its use is given for the problem of vibra-
tional wave-packet propagation in a disordered lattice.
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I. INTRODUCTION

Consider a dynamical system evolving in time, and s
pose that the time-evolution problem can be reduced to
eigenvalue-eigenvector problem. If the eigenvalues and
responding eigenvectors are known, then all dynamical v
ables describing the system can be found at any momen
time. Let us suppose that the eigenvalues and eigenvecto
the system exist but cannot be found either analytically
numerically, e.g., because the number of variables invol
is very large. The question is this: Can we predict~calculate
or simulate! the dynamical state of the system at any mom
of time knowing only its equations of motion, the initia
boundary conditions, and the fact that the system can
characterized by the eigenvalues and eigenvectors? The
swer is yes~obvious in the case of the existence of an a
lytical solution!. The standard way, though rather inefficien
is to solve the equations of motion by a numerical integrat
scheme. This usually involves performing a large numbe
integration time steps to reach the desired moment of t
~see, e.g., Ref.@1#!. Such schemes are applicable to gene
dynamical systems which are not necessarily described
eigenfunctions and eigenvalues, but do not take advantag
the existence of eigenfunctions and eigenvalues where
are available.

In this paper, we suggest a general, numerically effici
approach for the solution of time-evolution problems for d
namical systems, particularly involving second-order diff
ential equations, which can be described by eigenfuncti
and eigenvalues@2,3#. Our approach is quite the opposite
time-integration schemes, which treat the problem in
time domain by sampling the time continuum at discrete
tervals. Instead, we solve the time-evolution problem in
frequency~or eigenvalue! domain, taking advantage of th
fact that each eigenvector evolves independently of the
ers. This allows us to find all dynamical variables at a
moment of time after, in fact, only one time step. This a
proach is applicable to a broad class of dynamical syste
the interactions in which are described by linear Hermit
operators, and the time-evolution operator can be of q
general form. For example, quantum-mechanical syst
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characterized by time-independent Hamiltonians and cla
cal harmonic atomic systems described by dynamical ma
ces can be treated by the method developed below. Am
the physical problems to which this fast evolution meth
~FEM! can be applied are stochastic transport theory@4#,
quantum diffusion and electron localization problems@5,6#,
wave propagation in disordered atomic structures@7,8# etc.

The basic idea behind the FEM is to expand the form
~operator! solution of the problem in a series of suitab
~Chebyshev! polynomials defined on the set of operato
The coefficients in such expansions depend only on time
on the form of the time-evolution operator, and possibly
external sources or forces; they are independent of the n
ber of dynamical variables and the form of the interacti
operator. This provides the generality of the approach.
fact, the FEM was inspired by several ideas:~i! the possibil-
ity of using higher-order integration algorithms@1#; ~ii ! the
kernel polynomial method developed by Silver and Ro¨der
@9# for the calculations of density of states and other spec
functions for large systems; and~iii ! the unstable-oscillator
method of Okamoto and Maris@10#, which employs an un-
usually large integration time step for calculations of t
extreme eigenvalues and eigenvectors. Chebysh
polynomial-based propagator methods have been extens
used to study the time evolution of quantum systems obey
the ~first-order differential! time-dependent Schro¨dinger
equation@11#—see Refs.@12–14#. However, to the best o
our knowledge, they have not been used for an investiga
of the time evolution of, e.g., atomic vibrational problem
involving the solution of second-order differential equation
This is the subject of this paper.

The computational efficiency of the FEM is due to th
fact that the polynomials defined in terms of operators can
easily computed in the matrix representation of the operat
The FEM has very reasonable time and space requireme
can give an extremely high accuracy, and is easily vec
ized. It is especially useful for large systems, e.g., with;107

atoms characterized by sparse matrices, in which case
computation time scales linearly with the number of coor
nates as well as with the evolution time.

The rest of the paper is arranged in the following mann
©2001 The American Physical Society06-1
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Section II briefly outlines the problem; the formal solution
presented in Sec. III, and the Chebyshev polynomial exp
sion, which is the basis of the FEM, is described in Sec.
The widely used Verlet algorithm is analyzed in Sec. V, a
in Sec. VI we put forth an improved Verlet algorithm~which
unfortunately did not entirely live up to our hopes!. The re-
sults of tests of the computational performance of the F
for the case of vibrations of an ordered linear chain of ato
are presented in Sec. VII. A representative application of
FEM, to the case of wave-packet propagation in disorde
three-dimensional media, is given in Sec. VIII. Details of t
calculation of the coefficients in the Chebyshev series
given in the Appendix.

II. FORMULATION OF THE PROBLEM

Let us consider a dynamical system, the state of wh
can be characterized by a state vectoruu&[u in a linear vec-
tor space of dimensionalityN spanned by the orthonorma
basis$si% ( i 51, . . . ,N). Suppose that the state of the syste
evolves with timeu(t) according to the equation of motion

T̂~ t !u~ t !1Ĥu~ t !50, ~1!

with T̂(t) being a time-evolution operator andĤ being the
time-independent linear Hermitian operator responsible
interactions and defined in the same linear vector space.
operatorĤ can be written in the matrix formHs, with the
elementsHi j

s 5^si uĤusj& calculated, e.g., in the basis$si%.
The state vectoru can also be characterized by its comp
nents ~projections! in the same basis,u$u1

s , . . . ,uN
s %. The

matrix Hs is not necessarily diagonal in thes representation,
but there is a unitary transformationÊ to the orthonormal
basis$ei% ~the eigenvector basis!, in which the matrixHe is
diagonal~see, e.g., Ref.@15#!. The standard expressions co
necting the vectors and matrices in different representat
are: ue5E21us and He5E21HsE, with the matrixE con-
taining the eigenvectorsei ~with the corresponding eigenva
uesl i! as the columns in thes representation.

The time-evolution operator could be a quite general
tegrodifferential time-dependent operator. What is import
for us is just the fact that the solution,u(t,l), of Eq. ~1!, in
which the operatorĤ is replaced by a scalar numberl ~e.g.,
one of the eigenvalues of the matrixH!,

T̂~ t !u~ t,l!5lu~ t,l!, ~2!

exists, and can be found for certain initial conditions, eith
analytically or numerically. If this is the case, we assume t
the formal solution of Eq.~1! also exists, and can be writte
asu(t,H). One of the simplest realizations for the opera
T̂(t) is a linear differential operator in the form

T̂~ t !5a2~ t !
]2

]t2 1a1~ t !
]

]t
1a0~ t !, ~3!

with an(t) being functions of time.
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There are two straightforward important physical applic
tions for Eqs.~1!–~3!. The first one is for the casea2(t)
51 anda1(t)5a0(t)50 in Eq. ~3!, so that Eq.~1! can be
rewritten in the form

ü1Hu50. ~4!

This is the equation of motion of a classical harmonic m
chanical system ofNa particles without friction in a
D-dimensional (N5DNa) real space~system ofNa coupled
harmonic oscillators!. In that case, thes basis can be the site
basis, with the basis vector being a unit displacement ve
~from the equilibrium position! of one of the particles~at-
oms! along one of the Cartesian axes. The vectorus is then
the mass-weighted~multiplied by the square root of the
atomic mass! displacement vector, andHs is the dynamical
matrix containing the second derivatives of the potential
ergy @16#. The initial conditions for such a problem are us
ally defined by the atomic positions and velocities:

u~ t50!5u0 , ~5!

u̇~0!5v0 . ~6!

Equations~4!–~6! provide a complete description of the dy
namical system.

The second obvious application is fora2(t)5a0(t)50,
a1(t)52 i in Eq. ~3!, so that the equation of motion look
like

i
]

]t
C5HC. ~7!

This is just the particular case of the Schro¨dinger equation
(\51), where the vectoru is replaced by the wave functio
state vectorC defined in the finite-dimensional linear spac
Thes basis can be any suitable finite basis~e.g., the site basis
for solid-state tight-binding Hamiltonians@17#!. The matrix
H is the Hamiltonian matrix defined in the same basis, w
elementsHi j

s 5^si uĤusj&. For example, it could be the Ander
son Hamiltonian in the site basis@5#, or a perturbed Hamil-
tonian in the finite basis of the non-perturbed one@15#, etc.
The initial condition for such a problem could be

C~0!5C0 . ~8!

Equations~7! and ~8! describe the evolution of a quantum
mechanical system with time. The classical one-dimensio
lattice-vibrational problem is equivalent to the quantu
problem of an electron propagating along a chain of ato
each with a single orbital@18#.

Our main task here is to find the solution of the proble
given by Eq.~1! for a certain class of operatorsĤ ~linear,
Hermitian, and defined in the vector space spanned b
finite orthonormal basis! andT̂ @the existence of the solution
of the auxiliary equation~2! is required# for an arbitrary time
t, assuming the corresponding initial conditions and ma
elements of the operatorH to be known. In what follows, we
pay more attention to the classical problem described by E
6-2



i
a

o
ibr

E
an
,
e
th
th
al

th
a

u-

n
x

is
ite,

o a
is

al

rd
l

er
st

the
tion
-

the
an
es

its

f
king
on.
is

ion
me

-
to
a-

he
unc-
-
is

r
erms

en-

riate
-
dic-

FAST CHEBYSHEV-POLYNOMIAL METHOD FOR . . . PHYSICAL REVIEW E 63 056706
~4!–~6!, bearing in mind that the quantum problem@Eqs.~7!
and ~8!# can be treated similarly@12–14#.

III. FORMAL SOLUTION

Let us consider, for definiteness, an equation of motion
the form which includes the two important physical applic
tions discussed in Sec. II,

a2ü1a1u̇1~a01H!u50, ~9!

with a i being constants. The initial conditions for Eq.~9! are
given by Eqs.~5! and ~6!. The solution of this problem can
be trivially found in the eigenvector basis,

u~ t !5A~H;t !u01B~H;t !v0 , ~10!

with the matrix functions

A~H;t !5
exp$ iv1~H!t%2exp$ iv2~H!t%

i „v1~H!2v2~H!…
, ~11!

B~H;t !5
2v2~H!exp$ iv1~H!t%1v1~H!exp$ iv2~H!t%

v1~H!2v2~H!
.

~12!

The frequenciesv1(H) andv2(H) obey the equation

v1,2~H!5
1

2a2
$ ia1I6A2a1

2I14a2~a0I2H!%, ~13!

with I being the unit matrix. One of the useful realizations
these general expressions is for the classical harmonic v
tional problem characterized bya251 anda15a050 and
described by the equation of motion~4!. In this particular
case,v1,2(H)56 iAH, so that

A~H;t !5cosAHt, ~14!

B~H;t !5H21/2sinAHt, ~15!

with the spectrum of the matrixH lying in the intervall
P@0,lmax#.

This is a standard approach to the problem given by
~1!, which assumes a knowledge of the eigenvalues
eigenvectors of the problem. In some special cases, e.g.
symmetric dynamical matrices describing crystals, the eig
values and eigenvectors can be solved analytically, but in
general case the analytical solution is not known and
eigenvalues and eigenvectors are available only numeric
A direct diagonalization of the matrixH ~which could be
dense! is possible forN&104. Approximate methods~e.g.,
Lanczos @19#! allow sparse matrices withN&106 to be
solved, but normally either only the eigenvalues and/or
eigenvectors from a restricted range of the spectrum
available~see, e.g., Refs.@20,21#!. The calculation of all ei-
genvalues and eigenvectors for large sparse matricesN
&106) is possible in principle, but requires a lot of comp
tational effort~time and memory!.

The key point of our approach is to avoid the calculatio
of eigenvalues and eigenvectors but to assume their e
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tence only, i.e., the existence of the formal solution@Eqs.
~10!–~13!# in the eigenvector basis. This formal solution
actually independent of the basis and valid for any, e.g., s
representation of matrixH and displacement vectorsu @this
can be easily shown by applying a linear transformation t
new basis, Eq.~10!, and that is why the basis superscript
omitted in Eqs.~10!–~15!#. Therefore, we can use the form
solution exactly in that basis in which theH matrix and
initial vectors are available. This is not a straightforwa
procedure, because the matrixH is not necessarily diagona
in the available basis, so that the functionsA(H;t) and
B(H;t) in Eq. ~10! should be understood in terms of a pow
series of matrixH. The question of how to choose the mo
convenient expansions forA(H;t) and B(H;t) is discussed
in detail below.

One of the other possible known ways not to use
eigenvalues and eigenvectors lies in the time-integra
schemes for Eq.~1!, the most popular of them probably be
ing the Verlet method@1# for the atomic dynamics problem
@Eq. ~4!#. The drawback of this and similar approaches is
small integration time step which is necessary to obtain
accurate solution, and therefore the long computational tim
required in order to evolve the system quite far from
initial conditions~see, e.g., Refs.@1,18,20,22,23#!. Moreover,
the standard integration schemes are quite general~e.g., ap-
plicable for nonlinear operatorsĤ!, and do not use the fact o
the existence of the eigenvalues and eigenvectors, ma
them not very efficient for the system under considerati
Below, we develop a fast time-evolution method which
free of such drawbacks, and which allows the time evolut
of the system to be calculated without small integration ti
steps, and even to jump to the final state~using only one
‘‘integration’’ step! at a timet which is far away from the
initial momentt0 , e.g.,vmax(t2t0)*104, with vmax being the
maximum eigenfrequency of the system.

IV. CHEBYSHEV POLYNOMIAL EXPANSION

In Sec. III, we found the formal solution@Eqs.~10!–~13!#
of the problem given by Eq.~9! with initial conditions given
by Eqs.~5! and~6! which allows, in principle, the state vec
tor u(t) to be calculated at any moment of time. In order
do this in practice, we have to specify the way how to m
nipulate the functionsA(H;t) andB(H;t) defined with ma-
trix arguments. The most straightforward way, on which t
time-integration schemes are based, is to expand these f
tions in a Taylor series aroundt50. The series can be evalu
ated by a sequence of matrix-vector multiplications. This
accurate for small values ofvmaxt&1, but for vmaxt
*10– 102 the inherent instability in the process of Taylo
expansion results in cancellations between successive t
and a complete loss of precision.

An alternative way is based on an expansion in the eig
frequency domain. Let us treatt as a parameter, andH as a
matrix variable in the functionsA(H;t) andB(H;t). These
functions can then be expanded in a series of an approp
complete set of functionsfp(H) with time-dependent coef
ficients. The choice of the basis set for the expansion is
tated by the following requirements: the functionsfp(H)
6-3
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should preferably be polynomials, since evaluating ma
polynomials requires only simple matrix operations; t
functions fp(H) need to form a complete set only over
finite interval because the spectrum ofH is bounded; and the
coefficients in the expansion should be fast and easy to c
pute. All these requirements are met by the Chebyshev p
nomials @9#, Tp(H8)5cos(pcos21 H8), which form a com-
plete set for the matrixH8 if its eigenvalue spectrum is
confined to the interval@21,1#; they are defined by the fol
lowing recurrence relations:

T0~H8!5I , ~16!

T1~H8!5H8, ~17!

Tp11~H8!52H8Tp~H8!2Tp21~H8!. ~18!

In order to use the standard Chebyshev polynomials,
we map the spectrum,l iP@lmin ,lmax# of the matrixH onto
the interval@21,1# by the following linear transformation:

H85
2H2~lmax1lmin!I

lmax2lmin
. ~19!

The upper and lower boundslmax and lmin to its spectrum
can be easily estimated by different methods, e.g., by
Gerschgorin circle theorem@19#.

The functionsA(H;t) andB(H;t) can then be expande
as sums of Chebyshev polynomials of the new matrixH8:

A~H;t !5 (
p50

`

ap~ t !Tp~H8!, ~20!

B~H;t !5 (
p50

`

bp~ t !Tp~H8!. ~21!

The coefficientsap(t) and bp(t) for the desired evolution
time t can be easily found using the orthogonality of t
Chebyshev polynomials and fast Fourier transformat
~FFT! methods~see the Appendix!. The coefficients are in-
dependent of the concrete form of the matrixH ~only the
spectral boundslmax and lmin enter the expressions fo
them!, and are defined mainly by the form of the tim
evolution operatorT̂, i.e., by the concrete form of the func
tions A(H;t) andB(H;t). This ensures the generality of th
method.

Once the coefficientsap(t) andbp(t) are found, the solu-
tion for the state vector at an arbitrary timet can be written
as follows:

u~ t !5S (
p50

P21

ap~ t !Tp~H8!D u01S t (
p50

P21

bp~ t !Tp~H8!D v0 .

~22!

This expression is the solution of the problem and is a
point of the FEM. We should stress that the polynomi
Tp(H8) actually enter into solution~22! as products with the
initial vectorsu0 andv0 . This fact significantly improves the
05670
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computational performance, so that for a sparse matrixH the
computing time scales linearly with the number of variab
O(N).

The infinite limits in the series in Eqs.~20! and~21! have
been replaced in Eq.~22! by finite valuesP21 for the maxi-
mum order of the polynomials. In order to assess the valid
of this, we have investigated the dependence of the ma
tude of the coefficientsap andbp on the polynomial orderp
in the case of the classical harmonic vibrational probl
characterized by functionsA(H;t) andB(H;t) given by Eqs.
~14! and ~15!. It appears that, at fixedt, the coefficientsap
andbp first oscillate with increasingp and then decay expo
nentially with further increase ofp ~see Fig. 1 for the choice
of parameters appropriate to the particular case of a lin
harmonic atomic chain!. Such a behavior of the coefficient
ap andbp with p allows us to truncate the series in Eq.~21!
at a certain orderP of the polynomials such that the contr
bution from succeeding terms is negligible. A suitable tru
cation condition is

max$uaP~ t !u,ubP~ t !u%5«, ~23!

with « being the error bound. Asap and bp decay roughly
exponentially forp.P with a typical scaledP;1 ~see Fig.
1!, the rest of the series can be estimated to be not gre
than«dP .

Condition ~23! can be solved for the optimal number o
Chebyshev terms,P. The value ofP depends onvmaxt ~with
vmax5Almax! and on the tolerance«. The behavior of
P(vmaxt) for different« is shown in Fig. 2. For practical use
these curves can be approximated by the empirical exp
sion

P~Almaxtu«!.2a~«!ln~«!1b~«!~Almaxt !

1g~«!~Almaxt !
d~«!, ~24!

with the parametersa~«!, b~«!, g~«!, and d~«! depending
slightly on « @see Figs. 3~a! and 3~b!#. The number of poly-

FIG. 1. The magnitude of the expansion coefficients,uapu, in
Eq. ~20! vs the orderp of the Chebyshev polynomials for differen
evolution timest as indicated~with vmax52 as for a 1D ideal
atomic linear chain model!.
6-4
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nomialsP used in the expansion not surprisingly grows w
time, and the maximum order of the polynomials~number of
roots of the polynomial! can be estimated as the number
oscillations with a typical frequencyv* 5Al* in time t, i.e.,

P.v* t/p for P@1. ~25!

The typical frequency is normally of the same order as
maximum frequency,v* 5xvmax, with x;1. In the case of
a linear chain, the value ofx is roughlyx.b~«!p.1.6; see
Fig. 3~a!. The computational time for the coefficientsap and
bp scales asO(P log2 P) and is negligible in comparison
with the matrix-vector multiplication time~see below!.

In order to illustrate how the Chebyshev expansion
solution ~10!, we calculated the Chebyshev series~the

FIG. 2. The number of Chebyshev polynomials used,P, against
the productvmaxt, for different error boundse. For smallvmaxt, the
graph is nonlinear, but asvmaxt→`, P becomes approximately pro
portional tovmaxt. Increasinge has the effect of increasingP by a
roughly constant amount.

FIG. 3. The dependence of the coefficientsa, b, g, andd, in the
empirical equation~24!, for the maximum number of Chebyshe
polynomialsP on the error bounde. The lines are guides for the
eye.
05670
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dashed curve in Fig. 4! for the functionA(l)5cosAlt @see
Eq. ~14!# entering the solution, and compared it with th
known exact behavior~see the solid curve in Fig. 4! for the
particular valuest520 andlmax54. As seen from Fig. 4, the
Chebyshev expansion withP510 polynomials mainly repro-
duces the shape of the function cosAlt in the whole eigen-
value range. ForP512 the agreement is much better~see the
thin solid line in Fig. 4!, and for P515 the difference be-
tween the Chebyshev expansion and the exact function is
seen by eye~P525 is more appropriate for practical us
also see Fig. 2!. The Taylor expansion can also be used to
this function. Keeping the terms up toO(l10) ~which re-
quires the same computational time as for the Chebys
expansion!, we obtained the dotted curve in Fig. 4. Th
clearly shows that the Taylor expansion is accurate at sm
l but diverges catastrophically for largerl. In contrast, the
error in the Chebyshev approximation is spread uniform
over the whole spectrum. This demonstrates the superio
of the Chebyshev approximation over the Taylor series.

The FEM can be easily generalized for the classical h
monic vibrational system@see Eq.~4!# subject to an externa
force field,Hext(Ri ,t), with Ri characterizing an equilibrium
position of atomi, so that Eq.~4!, can be rewritten as

ü1Ĥu5ĈHext~Ri ,t !, ~26!

with Ĉ being a coupling operator described by a coupli
matrix C of the external field with the system. In the case
the electromagnetic field, for example, this matrix conta
atomic charges. If the interactions are local, then theC ma-
trix contains nonzero elements mainly around the diago
while in the case of nonlocal interactions the nonzero e
ments can be distributed over the whole matrix. For defin
ness, we consider an external field of the form

Hext~Ri ,t !5(
j

f j
ext~Ri !exp$ iv j t%, ~27!

FIG. 4. The ‘‘time evolution function’’A(l)5cosAlt ~thick
solid line! and its approximation by ten- (P510) ~dashed line! and
12-term (P512) ~thin solid line! Chebyshev series, and by an 1
term Taylor series@terms up tol10 ~dotted line!# for t510 and
lmax54.
6-5
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with f j
ext(Ri) being time independent. Assuming the sam

initial conditions ~5! and ~6!, it is straightforward to show
that the formal general solution for the displacement vec
is the sum of Eq.~10! and the particular integral,uPI ,

uPI~ t !5(
j

1

H2v j
$exp~ iv j t !2cosAHt

2 iv j t sincAHt%Ĉf j
ext~Ri !, ~28!

if none of the external frequenciesv j coincides with any of
the eigenfrequencies of the matrixH for the homogeneous
problem, and

uPI~ t !5(
j

t

2iAH
$exp~ iAHt !2sincAHt%Ĉ f j

ext~Ri !

~29!

otherwise. The particular integrals~28! and~29! can then be
easily expanded in Chebyshev polynomials in a similar w
to that described above for the homogeneous problem.

As mentioned above, the FEM can also be readily
tended to the linear quantum-mechanical problem descr
by Eqs. ~7! and ~8!, for which the formal solutions for
C(t)5Cu(t)1 iCv(t) can be written as

Cu~ t !5~cosHt !Cu~0!1~sinHt !Cv~0!, ~30!

Cv~ t !52~sinHt !Cu~0!1~cosHt !Cv~0!. ~31!

The functions cosHt and sinHt can then be easily expande
in Chebyshev polynomials in exactly the same way as ab
~also see Refs.@12–14#!.

The fast evolution method can be also used as an elem
tary single-step calculation procedure in the integration al
rithm, but the time stept2t0 can be arbitrary. This mean
that the efficient integration method based on the Chebys
polynomial expansion can be used to solve the equatio
motion for the systems in question. It appears to be m
faster and more accurate than other known schemes, e.g
Verlet algorithm~see below!.

V. VERLET ALGORITHM

An alternative way to use the formal solution@Eq. ~10!# is
to expand the functions entering it in a Taylor series, e
around t50. For example, in the case of harmonic vibr
tions, the functions (cosAHt)u0 and (sincAHt)v0 entering
Eq. ~10! @see Eqs.~14! and ~15!# can be expanded as

~cosAHt !u05u02
t2

2
Hu01

t4

24
H2u0 , ~32!

~sincAHt !v05v02
t2

6
Hv01

t4

120
H2v02¯ . ~33!

The matrix-vector multiplications involved in Eqs.~32! and
~33! make such an approach computationally efficient~espe-
cially for sparse matricesH! at smallt, when just a few~two
or three! terms can be kept. The evolution with time can th
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be followed by step-by-step integration with the requir
number of steps to reach timet.

Therefore, the formal solution@Eq. ~10!# can be repre-
sented as a polynomial in the matrixH, and, in fact, all the
time-integration schemes including the original Verlet alg
rithm and all its variants~e.g., high-order!, Runge-Kutta al-
gorithms and explicit predictor-corrector schemes~see, e.g.,
Ref. @1#! are based on it. For the sake of comparison with
FEM developed above, in this section we consider one
them, namely, the standard Verlet integration scheme app
to the evolution of classical harmonic systems.

For the system we have described above~e.g., harmonic
atomic systems!, the Verlet algorithm reads~see, e.g., Ref.
@1#!

uj 115~2I2t2H!uj2uj 21 , ~34!

whereuj is the displacement vector at timet5 j t for a time
stepj of lengtht. This is actually a triple recurrence relatio
very similar to the Chebyshev polynomial recurrence@Eq.
~18!#.

Let us choose the displacement vectoru(t) to be one of
the eigenvectors of the system corresponding to the eigen
quencyv5Al. In that case, we know exactly how it evolve
with time, i.e., u(t)5C1 exp(ivt)1C2 exp(2ivt) where
the constant vectorsC6 are defined by the initial conditions
Then we can compare this exact solution with that obtain
using the Verlet scheme. In order to find the solution of E
~34!, first we replace the dynamical matrixH there by the
corresponding eigenvaluel. Then the general solution ca
be found in the form@10#

uj5C1~m1! j1C2~m2! j , ~35!

with m6 obeying the equation

m6512
u2

2
6 i F12S 12

u2

2 D 2G1/2

.16 iu2
u2

2
7

iu3

8
1¯ , ~36!

with u5Alt5vt andum6u51. These valuesm6 have to be
compared with the exact solution

m6
exact5exp~6 ivt!.16 iu2

u2

2
7

iu3

6
1

u4

24
6

iu5

120
¯ .

~37!

As follows from a comparison of Eqs.~36! and ~37! for
smallu!1, the functionsm6 andm6

exactmatch up to the term
in O(u2). This is an indication of the low-frequency and/o
short-time accuracy of the Verlet algorithm. The gain er
per step, being proportional to the deviation of the absol
value of m from the unitary circle, is zero for the Verle
algorithm, becauseum6u51; therefore, the energy is con
served for this scheme. On the other hand, the argumentQ6

of m65um6uexp(iQ6), defined by the equation
6-6
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Q656cos21S 12
u2

2 D , ~38!

does not coincide with the exact solution,Q6
exact56u ~see

this difference forQ1 in Fig. 5!, and this is a source of th
phase error in the Verlet scheme. The deviation~overesti-
mate! becomes appreciable foru*1. Moreover, foru.2 the
solutionsm6 become real, and one of them (m1) diverges
exponentially. This restricts the possible values ofu to be
u,u* 52. Thus the maximum possible time stept* in the
Verlet algorithm is

t* .
2

vmax
, ~39!

with vmax being the maximum eigenfrequency in the spe
trum.

Let us estimate the maximum phase errorDQmax
5Q1(umax)2umax ~the estimate withQ2 is similar! experi-
enced by the fastest eigenmode, whereumax5vmaxt. Suppose
that the total time of the run containingNt steps isT. Then
the total phase erroremax, accumulated by the fastest eige
mode during the course of the simulation, is

emax5NtDQmax5vmaxT
DQmax

umax
, ~40!

or

FIG. 5. The phaseQ1 vs u5vt for the exact solutionQ15u
~solid line!, and the Verlet method given by Eq.~38! ~dashed line!.
05670
-

DQmax

umax
5

emax

vmaxT
. ~41!

In order to obtain concrete numbers for estimates~40! and
~41!, we have performed@2# simulations for the simples
harmonic atomic system, a perfect linear chain of atoms~see
below! with the typical valuesvmax52 andT510 000. If we
chooset to be the standard value of about 1% of the per
of the fastest eigenmode@18#, i.e., umax'0.063, then, from
Eq. ~40! we obtain an estimateemax'3.3 which is not good
at all. Conversely, if we demand reasonable values suc
e51023 andu'1023, then the number of steps required
Nt523107. This means that the Verlet algorithm can
fast or moderately accurate, but not both. The FEM dev
oped above is free of this drawback~see Table I below!.

VI. IMPROVED VERLET METHOD

The reason for the great popularity of the Verlet alg
rithm, besides its simplicity, is related to the associated
ergy conservation, i.e., zero gain error~see Sec. V!. How-
ever, the phase error in the Verlet algorithm can be actu
not negligible at all if the parameters are not chosen pr
erly. Proper choice of the parameters requires a very sm
time step, which is not very desirable for practical purpos
To avoid this drawback, we see the following way to im
prove the Verlet algorithm for harmonic systems.

Our aim in improving the Verlet scheme is to reduce t
phase error while preserving the zero gain error. A straig
forward way of doing this is to find an expression form @see
Eqs.~35! and~36!#, which is as close tomexactas possible. If
um6(u)u51, then m6(u) must be of the formm6(u)
5 f (u)6 iA12 f (u)2. The function f (u) for the original
Verlet algorithm is given by Eq.~36!. A logical improvement
bringing it closer to Eq.~37! is

m6~u!512
u2

2
1

u4

24
6 iF12S 12

u2

2
1

u4

24D
2G1/2

.16 iu2
u2

2
7

iu3

6
1

u4

24
6

iu5

144
1¯ , ~42!

so that this expansion coincides with Eq.~37! up to and
including termsO(u4). Rearranging Eq.~42! to eliminate
the square root leads to a quadratic equation inm ~with the
rootsm6!:
TABLE I. Comparison of the performance of the simple Verlet~leap-frog! method and FEM for the time
evolution of ad-functional displacement perturbation in an ideal linear harmonic atomic chain.

Quantity Verlet Verlet Verlet FEM FEM FEM

Time stept 0.01 0.1 1 1 10 4000
Number of stepsNt 43105 43104 43103 43103 400 1
OrderP for FEM - - - 9 25 4105
CPU/R10 000 time~sec! 760 77.0 54.4 217 49.7 18.7
e 5.531022 0.82 0.98 9.5310213 8.4310213 1310212

egain 2531024 2431024 231023 25310213 5310214 21310215
6-7
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m222S 12
u2

2
1

u4

24Dm1150. ~43!

Comparison of Eqs.~43! and ~34! shows that it correspond
to the triple recurrence

un1152S 12
t2

2
H1

t4

24
H2Dun2un21 , ~44!

where for the sake of generality~the displacement vecto
need not be necessarily an eigenmode!, the eigenvalue has
been replaced by the dynamical matrix. The extension of
second term in Eq.~44! to higher orders in (AHt) shows that
this is just a Taylor approximation to cosAHt, so that the
improved triple Verlet recursion can be written as

un1152~cosAHt!un2un21 . ~45!

In a manner directly analogous to the FEM~see Sec. IV!,
we could approximate (cosAHt)un in Eq. ~45! by a trun-
cated Chebyshev polynomial expansion. This would prod
a phase error more uniformly distributed over the spectr
of H ~see below for a comparison of the phase errors p
duced by different methods!.

This improved method has two drawbacks. First, the o
way to obtain the velocityvn is by differentiatingun numeri-
cally. This is notoriously unstable for larget. Therefore, it is
necessary to run a separate recurrence to findvn, starting
from v0 andv1. Second, the starting conditions for a sim
lation are usually supplied asu0 andv0, but u1 andv1 must
be computed accurately before the triple recurrences ca
launched. The best way to do this is, once again, to use
FEM itself. The only possible advantage of the improv
Verlet method over the FEM is that it appears to guaran
energy conservation. However, due to the problem w
launching, we found the energy conservation of the i
proved Verlet method to be no better than that of the FE

VII. PERFORMANCE OF THE FAST EVOLUTION
METHOD: GREEN FUNCTION OF A LINEAR CHAIN

In order to compare the performance of the original Ver
and FEM schemes, we choose one of the simplest mech
cal models, namely the linear one-dimensional~1D! har-
monic atomic chain~see, e.g., Refs.@16,18#, and references
therein!. Newton’s equations of motion for such a mod
read

d2un

dt2
52

]V

]un
, ~46!

with the potential energyV given by

V5 1
2 (

n
~un2un11!2, ~47!

assuming that all massesmn51 and spring constantskn
51. The atoms in the chain are equidistantly positioned
xn5na ~n51, . . . ,N, a51! with periodic boundary condi-
tions, andun are the displacements from these equilibriu
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positions. We have studied@2# the evolution of the
d-functional perturbation in this system described by the f
lowing initial conditions:

un~0!5dn , ~48!

u̇n~0!50. ~49!

This choice of the initial conditions has been dictated by t
reasons:~i! such a displacement pattern contains all t
eigenmodes of the system, and~ii ! the solution~the Green
function! is known analytically~see, e.g., Ref.@16#!, namely,

un~ t !5J2n~2t !, ~50!

u̇n~ t !5J2n21~2t !2J2n11~2t !, ~51!

with Jn(x) being the Bessel function.
The exact solutionuexact(t), given by Eq.~50!, can be

compared with the results of either the Verlet metho
uVer(t), or FEM,uFEM(t), thus allowing us to judge the qua
ity of these approximate methods. The deviations of the
proximate solutions from the exact one are characterized
the difference errore5uuexact2uu and the gain erroregain
5(uuu/uuexactu)21 ~with u5uFEM or u5uVer!. It may seem
strange that, although the Verlet method is supposed to h
zero gain error, we obtained errors of the order of 1023 from
the simulation~see the values ofegain in Table I!. This is due
to the ‘‘starting’’ and ‘‘stopping’’ errors. They are related t
the inevitable introduction of some gain errors when conve
ing between the initial conditions (u0 ,v0), the quantities in
the Verlet recurrence (uj ,uj 11), and the final quantities
(uNt

,vNt
), even though the recurrence itself is gain free.

the case of the FEM, it is difficult to separate the gain a
phase errors, and it is sufficient to consider the total erroe,
which is typically very small,e;1026210215 ~see Table I!.

Approximate solutions have been found numerically
N5104 atoms andt54000 (vmaxt58000). The results pre
sented in Table I and Fig. 6 show that the FEM is mu
faster and much more precise@cf. Figs. 6~b! and 6~c!#. In-
deed, the Verlet method can be either relatively fast but
precise~see the third column of Table I! or relatively precise
but slow ~see the first column Table I! in comparison with
the always precise, very fast single-step~sixth column! and
relatively fast, multiple-step~fourth column! FEM. As fol-
lows from Table I~cf. the fourth, fifth, and sixth columns!,
the strategy in accessing the best performance for the FE
to choose the smallest number of integration steps, pre
ably just a single evolution step~sixth column!, to the de-
sired timet.

The dramatic increase in speed for the FEM is related
the relatively small number of matrix-vector operatio
needed as compared to the Verlet scheme. The leapfrog
let algorithm has one such operation per step, so that the
number of matrix-vector operationsNmv for time T is esti-
mated to beNmv

Verlet.16vmaxT for a conventional choice o
the parameters,t50.0132p/vmax and Nmv

Verlet5Nt5T/t.
On the other hand, the number of matrix-vector operatio
per step for the FEM isNmv

FEM.2P21. The maximum order
6-8
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of the Chebyshev polynomials isP.xvmaxT/p;vmaxT @see
Eq. ~25!#, and bearing in mind that only one time step can
used to evolve the system for timeT, we find thatNmv

FEM

5zvmaxT/p with the numerical factorz;1, i.e., approxi-
mately an order of magnitude faster than the Verlet sche
~as follows from Table I!. Furthermore, whereas the Verl
method introduces an accumulated phase error of the o
of 1 rad into the fastest eigenmodes, the Chebyshev me
is essentially exact.

The advantage of the FEM can also be demonstrated
different scaling laws for the computational time with r
spect to a required error. In order to show this, let us find
dependence of the computational time,Tcomp, on different
values of the total phase erroremax @see Eq.~40!#. The com-
putational time is proportional to the number of variablesN
~for sparse matrices!, and to the number of simulation step
Nt , i.e.,Tcomp}NNt . The number of simulation steps, bein
the ratio of the total evolution time,T, to the length of the
step,t, can be estimated, with the use of Eq.~39!, as Nt
5T/t;vmaxT/umax. The phaseumax is related to the phas
error per step,DQmax, by the expansion in Eq.~38! for u
5umax!1, i.e.umax;DQmax

1/3 , so that

Nt;vmaxTDQmax
21/3. ~52!

Bearing in mind relation~40!, we can rewrite Eq.~52! as an
implicit equation forNt ,

Nt;vmaxTS vmax

Nt
D 21/3

, ~53!

FIG. 6. Displacement pattern~the displacementui of atom i vs
its equilibrium coordinateRi[ i ! for a d-functional initial displace-
ment perturbation ati 55000 in an ideal linear harmonic chain o
104 atoms atvmaxt54000: ~a! the exact solution,ui

exact; ~b! the
difference between the approximate solution obtained by the Ve
method~with the integration time-step,t50.01 and the number o
steps,Nt543105! and the exact solution,ui

Ver2ui
exact; ~c! the dif-

ference between the approximate solution obtained by the F
~with the integration time stept543103, the number of steps
Nt51 and the maximum order of the polynomials,P54105! and
the exact solution,ut

FEM2ui
exact.
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the solution of which with respect toNt gives the propor-
tionality Nt;(vmaxT)3/2emax

21/2. Therefore, the total computa
tional time scales as the inverse square root of the error

Tcomp}N~vmaxT!3/2emax
21/2. ~54!

On the other hand, the total simulation time for a sing
step FEM can be estimated asTcomp}NP(e), where the
maximum numberP of the polynomials in the expansio
depends essentially logarithmically one @see Eq. ~24!#,
which is much slower than the power-law dependence oe
for the Verlet algorithm given by Eq.~54! ~see Fig. 7!.
Rough estimates of RAM and CPU time requirements fo
vibrational problem in a 3D cubic lattice of 107 atoms are 10
Gb and 10 h/R10 000 forvmaxt5102.

VIII. APPLICATION OF THE FAST EVOLUTION
METHOD TO WAVE-PACKET PROPAGATION

The behavior of waves propagating in disordered medi
of widespread interest@7#. In particular, the problem of
atomic-vibrational, plane-wave propagation in disorder
systems@24#, e.g., amorphous solids@25#, and the concomi-
tant Ioffe-Regel crossover between weak- and stro
scattering regimes@26#, is of considerable importance in un
derstanding the vibrational behavior of such materia
Wave-packet propagation@18,27# is pehaps of even greate
interest, because it impacts directly on experimental qua
ties such as thermal conductivity of disordered mater
@28#. In perfectly crystalline materials, wave packets c
only propagate ballistically: the center of a launched wa
packet moves relative to the medium, even though the w
increases with time due to dispersion. In disordered mat
als, however, where disorder-induced scattering always
curs to a greater or lesser extent, as well as ballistic mot
wave packets can evolve in time in two other complet

et

M

FIG. 7. Computational timeTcomp ~CPU/R10 000 in seconds!,
against the achieved difference errore, for the FEM~solid line! and
Verlet ~dashed line! algorithms applied to describe the evolution
a d-functional perturbation in a linear atomic chain, as described
the text. The parameters of the model are the following: numbe
atomsN510 000, total evolution timeT5500, and maximum fre-
quencyvmax52.
6-9
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different ways. The evolution may be diffusive~i.e., a
random-walk-like behavior!. After ballistic propagation of a
launched wave packet over a distance of a few times
mean free path, multiple scattering becomes significant,
a diffusive behavior occurs, in which the center of the wa
packet remains stationary, while the width increases as
square root of elapsed time. For a sufficiently large degre
disorder, a wave packet may even become localized~when
the majority of the eigenmodes making up the wave pac
are localized!, in which both the wave packet mean positio
and width become time independent. However, simulation
wave-packet propagation by using, e.g., the Verlet algorit
@18#, is very unsatisfactory, as discussed in Sec. V. In t
section, we consider the use of Chebyshev-polynomial F
to simulate wave-packet propagation in a model disorde
medium, as an example of the applicability and usefulnes
this approach.

The system studied was a harmonic fcc lattice contain
N3N3N atoms with periodic boundary conditions (N
5120) connected by springs characterized by spring c
stantsk. Disorder was introduced in the model in the form
cellular ~lattice! disorder via a distributionr~k! of spring
constants. The force-constant probability distribution cho
was a box~uniform! distribution, centered at a valuek0 , and
with a width Dk, i.e., kP@k02Dk/2,k01Dk/2#. This type
of model reproduces essential features of the vibrational
havior of real amorphous solids, such as the low-freque
boson peak in the vibrational density of states@29,30#.

In order to investigate the time evolution of the vibr
tional wave packet, first we have to construct it, i.e.,
specify the initial conditions of the problem. There is a c
tain degree of freedom in choosing the shape of an in
wave packet. Here we consider only spatially Gaussian w
packets, but even for these there are a number of adjus
parameters. Such wave packets can be described by
amplitudeuUu, mean positionR0 , mean wave vectork0 , a
‘‘width’’ tensor W0 , and for vibrational excitations, a pola
ization ~contained in the amplitude vectorU, a phase veloc-
ity vp , and a group velocityvg . Below we study only spheri-
cally symmetric wave packets, withW05W0I , whereW0 is
the width of the wave packet along any direction whi
obeys the restrictionsa!W0!L, wherea is the lattice unit
cell size andL is the box size. Obviously, the largerW0 is,
the smaller the spread of the wave packet in reciprocak
space, and vice versa. Therefore, the initial wave packet
be written in the form.

uu0&5Re(
n

N

U expF ik0•Rn2
1

2
~Rn2R0!W0

22~Rn2R0!G un&

~55!

for the initial displacement vector~n runs over all the atoms
in the system!, and

uv0&5Re(
n

N

U@vgW0
22~Rn2R0!2 ivp•k0#

3expF ik0•Rn2
1

2
~Rn2R0!W0

22~Rn2R0!G un&

~56!
05670
e
d

e
he
of

et

f

s
M
d

of

g

n-

n

e-
y

-
l

ve
ble
eir

an

for the initial velocity vector. The atomic velocitiesuv0& de-
termine the direction of travel of the wave packet, and
calculate them requires a knowledge of both the phase
group velocities. Failure to take these into account corre
results in a wave that~e.g., in one dimension! splits into two
parts, traveling in opposite directions. In order to elimina
such unwanted reflections of the wave packet completely
is necessary to take higher-order derivatives of the disper
relationv(k) into account~the group velocity being just the
first derivative!. A typical initial wave packet, which was
propagated by the FEM, is shown in Fig. 8.

Once the initial wave packet is constructed, it can
propagated forward in time using the FEM. Before doi
this, first let us specify the physical characteristics of t
wave packet we would like to follow. These are the avera
position ^R(t)& of the wave packet, and its widthW(t).
Their definitions for the electron case are obvious and
related to the probabilitiesPn(t)5 z^nuc(t)& z2 to find an elec-
tron on siten, so that

^R~ t !&5

(
n

Pn~ t !Rn

(
n

Pn~ t !

. ~57!

The width of the wave packet can be defined via a varia
tensorV,

V5^R~ t !RT~ t !&2^R~ t !&^RT~ t !&

[

(
n

Pn~ t !RnRn
T

(
n

Pn~ t !

2^R~ t !&^RT~ t !& ~58!

FIG. 8. Visualization of a typical initial longitudinal wave
packet created at the body center of the simulation box contain
30330330 cubic nonprimitive unit cells~four atoms per unit cell!
of the fcc lattice. The squared displacementsz5uxy

2 are shown,
projected onto thex2y plane,uxy

2 .(nuunu2d(x2Rnx)d(y2Rny),
vs x2y coordinates of the unit cells. The parameters describing
initial Gaussian wave packet att50 are the positionR0

5(15,15,15), the Gaussian width tensorW053I , the average wave
vector k05(1,0,0), the phase velocityvp5(0.64,0,0), the group
velocity vg5(0.64,0,0), and the polarization vectorU5~1,0,0!.
6-10
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~RT stands for a transposedD-dimensional vector! as a
square root of its trace,

W5AD21 Tr V. ~59!

These definitions hold true for the vibrational wave packe
well, but the meaning of the probabilityPn is different. In
the case of atomic vibrations, the valuePn is associated with
a local vibrational energy@18# and one of the possible way
of its definition is the following@27#:

Pn5 1
2 z^nzv~ t !& z21 1

2 ^u~ t !un&^nuHuu~ t !&. ~60!

Here H stands for the dynamical matrix with ele
ments, Hnn8 , which are D3D matrices @16#,
Hna,n8b5(1/2)(knn8 /Amnmn8)@(Rm2Rn)a(Rm2Rn)b /uRm
2Rnu2#, with knn8 denoting the spring constant between
omsn andn8 having massesmn andmn8 ; the indicesa and
b run over the Cartesian coordinates.

As a test of the efficiency of the Chebyshev-polynomi
based FEM as applied to wave-packet propagation, we h
investigated the time-evolution behavior of free@18# ~and
driven @27#! atomic-vibrational wave packets in a fcc diso
dered lattice characterized by different values of disor
~different Dk! and also electron wave-packet propagation
the same lattice described by the Anderson-model Ha
tonian@5#. Below, we discuss only the results for free vibr
tional wave-packet propagation. Initial free longitudina
acoustic~LA!-like vibrational wave packets were generate
with average wave vector and polarization in, say, thex di-
rection. The phase and group velocities required@see Eq.
~57!# were obtained from thev(k) dispersion relation calcu
lated for the fcc crystal: the LA branch is almost linear b
tween thek values~0,0,0! and (p/a,0,0).

The results of these FEM simulations for wave pack
characterized by different initial average wave vectorsk0 ,
and propagating in structures with different degree of dis
der, Dk/k0 , are presented in Figs. 9–11. A wave pack
characterized by a relatively small initial average wave v
tor, k05(1,0,0), propagates in crystalline and not ve
strongly disordered media~Dk/k050 and 0.5, respectively!
in the ballistic regime@see Figs. 9~a! and 9~b!#. Indeed, both
the average position of the wave packet and its width sc
almost linearly with time,̂ Rx(t)&}t andW(t)}t @see Figs.
11~a! and 11~d!#. The ‘‘wraparound’’ effects are evident in
the wave-packet profile due to reflections from the bou
aries of the simulation box. Increasing the disorder
Dk/k051.0 results in a deviation from ballistic behavior an
a start of the crossover to the diffusive regime, i.e., the ti
dependence of the average position of the package begi
deviate from linearity@see the dot-dashed line in Fig. 11~a!#
and the shape of the packet is changed as well; it is ap
ciably broadened and elongated, see Fig. 9~c!#.

The diffusive character of propagation is enhanced w
increasing both the initial average wave vector and the
gree of disorder. Indeed, the wave packet characterized
k05(2,0,0) propagates through the disordered medium w
Dk/k052.0 in the diffusive regime@see Fig. 10~c!#. In this
regime, the wave packet average position is time indep
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dent, (̂ Rx(t)&.const, and the wave-packet width scal
with time as (W}t1/2) @see the dot-dashed lines in Fig
11~b! and 11~e!#. At higher values ofk0 , the diffusive be-
havior is even more pronounced@see Figs. 11~c! and 11~d!#.

FIG. 9. Visualization of the time evolution of a free longitudin
vibrational wave packet with an initial average wave vectork0

5(1,0,0) in a 30330330 unit cell~cubic nonprimitive! fcc lattice,
calculated using the FEM att515 in structures characterized b
different degrees of disorder.~a! The wave packet in a disorder-fre
~Dk50! crystalline lattice. The extra structure in the wave pac
shape is due to boundary-induced wraparound effects.~b! and ~c!.
The wave packet in a force-constant-disordered lattice w
Dk/k050.5 andDk/k051.0, respectively. The axis notations an
the parameters of the initial wave packet are the same as in Fi
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The other effect which is typical of wave-packet propag
tion in disordered media is a mixture of polarizations@25#
which is due to disorder-induced hybridization between d
ferent branches@30#. Indeed, although the initial wave pack
launched was purely longitudinal in character, the tim
evolution simulations show that disorder-induc
longitudinal-transverse scattering occurs for the propaga
in the force-constant-disordered lattice, and both longitud

FIG. 10. Visualization of the time evolution of a free longitud
nal vibrational wave packet with an initial average wave vectork0

5(2,0,0) in models characterized by different degrees of disor
~a! Dk50, ~b! Dk50.5, and~c! Dk51.0. The other parameters a
the same as in Figs. 8 and 9.
05670
-

-

-

n
al

and transverse components are present in the wave pa
after a certain timet ~Fig. 12!.

IX. CONCLUSIONS

We have developed a Chebyshev-polynomial-based f
evolution method for classical and quantum linear dynam
systems. The method requires the existence of eigenfu
tions and eigenvalues of the problem, but does not req
them to be computed explicitly. It uses only the interacti
operator in matrix form, and initial conditions. The key poi
of the method is related to a polynomial expansion of
formal solution at an arbitrary timet. These polynomials are
defined in terms of the operators~matrices!, but the coeffi-
cients are scalars depending on time and are independe
the type of variables for the polynomials. The fast-evoluti
method is computationally efficient, and can be used
large systems containing up to 107 particles. It differs in
principle from the standard time-integration schemes~e.g.,
Verlet!, and appears to be much more accurate and fast

The fast-evolution method is general and applicable
many physical problems. We have investigated the per
mance of the method by analyzing a classical o
dimensional atomic harmonic system. Extension of
method to the solution of the diffusional and wave equatio
is also quite straightforward. We have also demonstrated
use of this method to the problem of wave-packet propa
tion in disordered structures.
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FIG. 11. Trajectories of the average positions@~a!–~c!# and
widths @~d!–~f!# of longitudinal vibrational wave packets propaga
ing in a lattice containing varying degrees of force-constant dis
der Dk/k0 , as marked, and for three initial average wave vect
k0 , as marked~the other parameters are as in Figs. 8 and 9!. The
turnover in the curves is due to the boundary-induced wraparo
effects in Figs. 9 and 10.
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APPENDIX

In this Appendix we demonstrate how the coefficien
ap(t) and bp(t) in expansions~20! and ~21! can be evalu-
ated. Let us consider the functionsA(Hs) andB(Hs) defined
in terms of the matrices in the site representation. If

FIG. 12. Longitudinal-transverse scattering in the time evolut
~at t515! of an initially longitudinal vibrational wave packet@k0

5(2,0,0) ~the other parameters are as in Fig. 8!#, propagating in a
force-constant disordered 30330330 unit-cell fcc lattice (Dk/k0

50.5). Contour plots of the squared displacements projected on
x2y plane ~as in Fig. 8! are shown.~a! Total displacements.~b!
Longitudinal displacements.~c! Transverse displacements.
05670
e

coefficientsa i in Eq. ~9! are real, then below we understan
A(Hs) andB(Hs) as their real parts. In the case of compl
coefficients, the real and imaginary parts of these functi
can be treated separately, as demonstrated at the end of
IV. Transformation to the eigenmode basis, e.
E21A(Hs)E5A(He).(p50

P21ap(t)Tp„(H
e)8…, reduces the

problem to polynomials defined in terms of scalars,Tp(lm),
i.e., in terms of the diagonal elements of the matrixHe. This
means that the coefficientsap(t) andbp(t) can be evaluated
from the following relations for the functions defined
terms of the scalar variables:

A~l;t !. (
p50

P21

ap~ t !Tp~l8!, ~A1!

B~l;t !. (
p50

P21

bp~ t !Tp~l8!, ~A2!

wherel8 is a scaled and shifted version oflP@lmin ,lmax#
designed to fall within the range@21, 1#,

l85
2l

lmax2lmin
2

lmax1lmin

lmax2lmin
, ~A3!

which is similar to Eq.~19!.
Consider, for example, the expansion ofA(l):

A~l;t !. (
p50

P21

ap~ t !Tp~l8![ (
p50

P21

ap~ t !cos~p cos21l8!.

~A4!

In order to find the coefficientsap(t), it is convenient to
sample the continuous variablef5cos21(l8) at P discrete
points, and introduce a new discrete variableq defined by the
relationq5Pf/p, so thatq50, . . . ,P21. Multiplying Eq.
~A4! by the polynomialsTp8(q), and using the orthogonality
property

(
q50

P21

Tp~q!Tp8~q!5
1

2
~11dp,0!P, ~A5!

we obtain the following relation forap(t):

ap~ t !5
2

~11dp,0!P
(
q50

P21

A

3F Xl̄1Dl cosS pq

P D C;t GcosS ppq

P D , ~A6!

with l̄5(lmax1lmin)/2 and Dl5(lmax2lmin)/2. This ex-
pression is in fact a discrete cosine transform, and can
easily computed using the FFT algorithm. The coefficie
bp(t) are calculated similarly, exchanging the functio
A(l;t) for B(l;t).
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